-
Notifications
You must be signed in to change notification settings - Fork 423
/
Copy pathMiniImagenet.py
214 lines (183 loc) · 8.73 KB
/
MiniImagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import torch
from torch.utils.data import Dataset
from torchvision.transforms import transforms
import numpy as np
import collections
from PIL import Image
import csv
import random
class MiniImagenet(Dataset):
"""
put mini-imagenet files as :
root :
|- images/*.jpg includes all imgeas
|- train.csv
|- test.csv
|- val.csv
NOTICE: meta-learning is different from general supervised learning, especially the concept of batch and set.
batch: contains several sets
sets: conains n_way * k_shot for meta-train set, n_way * n_query for meta-test set.
"""
def __init__(self, root, mode, batchsz, n_way, k_shot, k_query, resize, startidx=0):
"""
:param root: root path of mini-imagenet
:param mode: train, val or test
:param batchsz: batch size of sets, not batch of imgs
:param n_way:
:param k_shot:
:param k_query: num of qeruy imgs per class
:param resize: resize to
:param startidx: start to index label from startidx
"""
self.batchsz = batchsz # batch of set, not batch of imgs
self.n_way = n_way # n-way
self.k_shot = k_shot # k-shot
self.k_query = k_query # for evaluation
self.setsz = self.n_way * self.k_shot # num of samples per set
self.querysz = self.n_way * self.k_query # number of samples per set for evaluation
self.resize = resize # resize to
self.startidx = startidx # index label not from 0, but from startidx
print('shuffle DB :%s, b:%d, %d-way, %d-shot, %d-query, resize:%d' % (
mode, batchsz, n_way, k_shot, k_query, resize))
if mode == 'train':
self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
transforms.Resize((self.resize, self.resize)),
# transforms.RandomHorizontalFlip(),
# transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
else:
self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
transforms.Resize((self.resize, self.resize)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.path = os.path.join(root, 'images') # image path
csvdata = self.loadCSV(os.path.join(root, mode + '.csv')) # csv path
self.data = []
self.img2label = {}
for i, (k, v) in enumerate(csvdata.items()):
self.data.append(v) # [[img1, img2, ...], [img111, ...]]
self.img2label[k] = i + self.startidx # {"img_name[:9]":label}
self.cls_num = len(self.data)
self.create_batch(self.batchsz)
def loadCSV(self, csvf):
"""
return a dict saving the information of csv
:param splitFile: csv file name
:return: {label:[file1, file2 ...]}
"""
dictLabels = {}
with open(csvf) as csvfile:
csvreader = csv.reader(csvfile, delimiter=',')
next(csvreader, None) # skip (filename, label)
for i, row in enumerate(csvreader):
filename = row[0]
label = row[1]
# append filename to current label
if label in dictLabels.keys():
dictLabels[label].append(filename)
else:
dictLabels[label] = [filename]
return dictLabels
def create_batch(self, batchsz):
"""
create batch for meta-learning.
×episode× here means batch, and it means how many sets we want to retain.
:param episodes: batch size
:return:
"""
self.support_x_batch = [] # support set batch
self.query_x_batch = [] # query set batch
for b in range(batchsz): # for each batch
# 1.select n_way classes randomly
selected_cls = np.random.choice(self.cls_num, self.n_way, False) # no duplicate
np.random.shuffle(selected_cls)
support_x = []
query_x = []
for cls in selected_cls:
# 2. select k_shot + k_query for each class
selected_imgs_idx = np.random.choice(len(self.data[cls]), self.k_shot + self.k_query, False)
np.random.shuffle(selected_imgs_idx)
indexDtrain = np.array(selected_imgs_idx[:self.k_shot]) # idx for Dtrain
indexDtest = np.array(selected_imgs_idx[self.k_shot:]) # idx for Dtest
support_x.append(
np.array(self.data[cls])[indexDtrain].tolist()) # get all images filename for current Dtrain
query_x.append(np.array(self.data[cls])[indexDtest].tolist())
# shuffle the correponding relation between support set and query set
random.shuffle(support_x)
random.shuffle(query_x)
self.support_x_batch.append(support_x) # append set to current sets
self.query_x_batch.append(query_x) # append sets to current sets
def __getitem__(self, index):
"""
index means index of sets, 0<= index <= batchsz-1
:param index:
:return:
"""
# [setsz, 3, resize, resize]
support_x = torch.FloatTensor(self.setsz, 3, self.resize, self.resize)
# [setsz]
support_y = np.zeros((self.setsz), dtype=np.int)
# [querysz, 3, resize, resize]
query_x = torch.FloatTensor(self.querysz, 3, self.resize, self.resize)
# [querysz]
query_y = np.zeros((self.querysz), dtype=np.int)
flatten_support_x = [os.path.join(self.path, item)
for sublist in self.support_x_batch[index] for item in sublist]
support_y = np.array(
[self.img2label[item[:9]] # filename:n0153282900000005.jpg, the first 9 characters treated as label
for sublist in self.support_x_batch[index] for item in sublist]).astype(np.int32)
flatten_query_x = [os.path.join(self.path, item)
for sublist in self.query_x_batch[index] for item in sublist]
query_y = np.array([self.img2label[item[:9]]
for sublist in self.query_x_batch[index] for item in sublist]).astype(np.int32)
# print('global:', support_y, query_y)
# support_y: [setsz]
# query_y: [querysz]
# unique: [n-way], sorted
unique = np.unique(support_y)
random.shuffle(unique)
# relative means the label ranges from 0 to n-way
support_y_relative = np.zeros(self.setsz)
query_y_relative = np.zeros(self.querysz)
for idx, l in enumerate(unique):
support_y_relative[support_y == l] = idx
query_y_relative[query_y == l] = idx
# print('relative:', support_y_relative, query_y_relative)
for i, path in enumerate(flatten_support_x):
support_x[i] = self.transform(path)
for i, path in enumerate(flatten_query_x):
query_x[i] = self.transform(path)
# print(support_set_y)
# return support_x, torch.LongTensor(support_y), query_x, torch.LongTensor(query_y)
return support_x, torch.LongTensor(support_y_relative), query_x, torch.LongTensor(query_y_relative)
def __len__(self):
# as we have built up to batchsz of sets, you can sample some small batch size of sets.
return self.batchsz
if __name__ == '__main__':
# the following episode is to view one set of images via tensorboard.
from torchvision.utils import make_grid
from matplotlib import pyplot as plt
from tensorboardX import SummaryWriter
import time
plt.ion()
tb = SummaryWriter('runs', 'mini-imagenet')
mini = MiniImagenet('../mini-imagenet/', mode='train', n_way=5, k_shot=1, k_query=1, batchsz=1000, resize=168)
for i, set_ in enumerate(mini):
# support_x: [k_shot*n_way, 3, 84, 84]
support_x, support_y, query_x, query_y = set_
support_x = make_grid(support_x, nrow=2)
query_x = make_grid(query_x, nrow=2)
plt.figure(1)
plt.imshow(support_x.transpose(2, 0).numpy())
plt.pause(0.5)
plt.figure(2)
plt.imshow(query_x.transpose(2, 0).numpy())
plt.pause(0.5)
tb.add_image('support_x', support_x)
tb.add_image('query_x', query_x)
time.sleep(5)
tb.close()