forked from neetcode-gh/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0279-perfect-squares.cpp
70 lines (60 loc) · 2.08 KB
/
0279-perfect-squares.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <iostream>
#include <vector>
using namespace std;
/*
problem link: https://leetcode.com/problems/perfect-squares/description/
Given an integer n, return the least number of perfect square numbers that sum to n.
A perfect square is an integer that is the square of an integer; in other words, it is the
product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3
and 11 are not.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
*/
class Solution
{
public:
int numSquares(int n)
{
// Create a vector to store all perfect squares
vector<int> vectorOfPerfectSquare;
// Loop through the numbers from 1 to the square root of n
for (int i = 1; i * i <= n; i++)
{
// If the square of i is a perfect square, push it to the vector v
vectorOfPerfectSquare.push_back(i * i);
}
// If n is equal to 1, return 1
if (n == 1)
{
return 1;
}
// Define a variable Max equal to n + 1
int Max = n + 1;
// Create a vector dp with length equal to n + 1 and fill it with Max
vector<int> dp(n + 1, Max);
// Initialize the first element of dp as 0
dp[0] = 0;
// Loop through n from 1 to n
for (int i = 1; i <= n; i++)
{
// Loop through the vectorOfPerfectSquare
for (int j = 0; j < vectorOfPerfectSquare.size(); j++)
{
// If the value of i is greater than or equal to the current coin value
if (i - vectorOfPerfectSquare[j] >= 0)
{
// Update the value of dp[i] to the minimum of dp[i] and dp[i-vectorOfPerfectSquare[j]] + 1
dp[i] = min(dp[i], dp[i - vectorOfPerfectSquare[j]] + 1);
}
}
}
// Return the value of dp[n] if it is less than or equal to n, else return -1
return dp[n] > n ? -1 : dp[n];
}
};