-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompactness.v
691 lines (656 loc) · 18.1 KB
/
Compactness.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
Require Export TopologicalSpaces.
Require Export Nets.
Require Export FilterLimits.
Require Export Continuity.
Definition compact (X:TopologicalSpace) :=
forall C:Family (point_set X),
(forall U:Ensemble (point_set X), In C U -> open U) ->
FamilyUnion C = Full_set ->
exists C':Family (point_set X),
Finite _ C' /\ Included C' C /\
FamilyUnion C' = Full_set.
Lemma compactness_on_indexed_covers:
forall (X:TopologicalSpace) (A:Type) (C:IndexedFamily A (point_set X)),
compact X ->
(forall a:A, open (C a)) -> IndexedUnion C = Full_set ->
exists A':Ensemble A, Finite _ A' /\
IndexedUnion (fun a':{a':A | In A' a'} => C (proj1_sig a')) = Full_set.
Proof.
intros.
pose (cover := ImageFamily C).
destruct (H cover) as [subcover].
intros.
destruct H2.
rewrite H3; apply H0.
unfold cover; rewrite <- indexed_to_family_union; trivial.
destruct H2 as [? []].
destruct (finite_choice _ _
(fun (U:{U:Ensemble (point_set X) | In subcover U}) (a:A) =>
proj1_sig U = C a)) as [choice_fun].
apply Finite_ens_type; trivial.
destruct x as [U].
simpl.
apply H3 in i.
destruct i.
exists x; trivial.
exists (Im Full_set choice_fun).
split.
apply FiniteT_img.
apply Finite_ens_type; trivial.
intros; apply classic.
apply Extensionality_Ensembles; split; red; intros.
constructor.
rewrite <- H4 in H6.
destruct H6.
assert (In (Im Full_set choice_fun) (choice_fun (exist _ S H6))).
exists (exist _ S H6).
constructor.
trivial.
exists (exist _ (choice_fun (exist _ S H6)) H8).
simpl.
rewrite <- H5.
simpl.
trivial.
Qed.
Lemma compact_finite_nonempty_closed_intersection:
forall X:TopologicalSpace, compact X ->
forall F:Family (point_set X),
(forall G:Ensemble (point_set X), In F G -> closed G) ->
(forall F':Family (point_set X), Finite _ F' -> Included F' F ->
Inhabited (FamilyIntersection F')) ->
Inhabited (FamilyIntersection F).
Proof.
intros.
apply NNPP; red; intro.
pose (C := [ U:Ensemble (point_set X) | In F (Complement U) ]).
refine (let H3:=(H C _ _) in _).
intros.
destruct H3.
apply H0 in H3.
apply closed_complement_open; trivial.
apply Extensionality_Ensembles; split; red; intros.
constructor.
apply NNPP; red; intro.
contradiction H2.
exists x.
constructor.
intros.
apply NNPP; red; intro.
contradiction H4.
exists (Complement S).
constructor.
rewrite Complement_Complement; trivial.
exact H6.
destruct H3 as [C' [? [? ?]]].
pose (F' := [G : Ensemble (point_set X) | In C' (Complement G)]).
refine (let H6 := (H1 F' _ _) in _).
assert (F' = Im C' Complement).
apply Extensionality_Ensembles; split; red; intros.
destruct H6.
exists (Complement x); trivial.
symmetry; apply Complement_Complement.
destruct H6.
constructor.
rewrite H7; rewrite Complement_Complement; trivial.
rewrite H6; apply finite_image.
assumption.
red; intros.
destruct H6.
apply H4 in H6.
destruct H6.
rewrite Complement_Complement in H6; trivial.
destruct H6 as [x0].
destruct H6.
assert (In (FamilyUnion C') x).
rewrite H5; constructor.
destruct H7.
assert (In (Complement S) x).
apply H6.
constructor.
rewrite Complement_Complement; trivial.
contradiction H9.
Qed.
Lemma finite_nonempty_closed_intersection_impl_compact:
forall X:TopologicalSpace,
(forall F:Family (point_set X),
(forall G:Ensemble (point_set X), In F G -> closed G) ->
(forall F':Family (point_set X), Finite _ F' -> Included F' F ->
Inhabited (FamilyIntersection F')) ->
Inhabited (FamilyIntersection F)) ->
compact X.
Proof.
intros.
red; intros.
apply NNPP; red; intro.
pose (F := [ G:Ensemble (point_set X) | In C (Complement G) ]).
refine (let H3 := (H F _ _) in _).
intros.
destruct H3.
apply H0; trivial.
intros.
apply NNPP; red; intro.
contradiction H2.
exists [ U:Ensemble (point_set X) | In F' (Complement U) ].
repeat split.
assert ([U:Ensemble (point_set X) | In F' (Complement U)] =
Im F' Complement).
apply Extensionality_Ensembles; split; red; intros.
destruct H6.
exists (Complement x); trivial.
symmetry; apply Complement_Complement.
constructor.
destruct H6.
rewrite H7; rewrite Complement_Complement; trivial.
rewrite H6; apply finite_image; trivial.
red; intros.
destruct H6.
apply H4 in H6.
destruct H6.
rewrite Complement_Complement in H6; trivial.
apply Extensionality_Ensembles; split; red; intros.
constructor.
apply NNPP; red; intro.
contradiction H5.
exists x.
constructor.
intros.
apply NNPP; red; intro.
contradiction H7.
exists (Complement S).
constructor.
rewrite Complement_Complement; trivial.
exact H9.
destruct H3.
assert (In (FamilyUnion C) x).
rewrite H1; constructor.
destruct H4.
assert (In (Complement S) x).
destruct H3.
apply H3.
constructor.
rewrite Complement_Complement; trivial.
contradiction H6.
Qed.
Lemma compact_impl_filter_cluster_point:
forall X:TopologicalSpace, compact X ->
forall F:Filter (point_set X), exists x0:point_set X,
filter_cluster_point F x0.
Proof.
intros.
pose proof (compact_finite_nonempty_closed_intersection
_ H [ G:Ensemble (point_set X) | In (filter_family F) G /\
closed G ]) as [x0].
intros.
destruct H0 as [[]]; trivial.
intros.
assert (closed (FamilyIntersection F')).
apply closed_family_intersection.
intros.
apply H1 in H2.
destruct H2 as [[]]; trivial.
assert (In (filter_family F) (FamilyIntersection F')).
clear H2.
induction H0.
rewrite empty_family_intersection.
apply filter_full.
replace (FamilyIntersection (Add A x)) with
(Intersection (FamilyIntersection A) x).
apply filter_intersection.
apply IHFinite.
auto with sets.
assert (In (Add A x) x) by (right; constructor).
apply H1 in H3.
destruct H3 as [[]]; trivial.
apply Extensionality_Ensembles; split; red; intros.
destruct H3.
constructor.
intros.
destruct H5.
destruct H3.
apply H3; trivial.
destruct H5; trivial.
destruct H3.
constructor.
constructor; intros.
apply H3.
auto with sets.
apply H3.
auto with sets.
apply NNPP; intro.
contradiction (filter_empty _ F).
replace (@Empty_set (point_set X)) with (FamilyIntersection F'); trivial.
apply Extensionality_Ensembles; split; red; intros.
contradiction H4.
exists x; trivial.
destruct H5.
exists x0.
red; intros.
destruct H0.
apply H0.
constructor.
split.
apply filter_upward_closed with S; trivial.
apply closure_inflationary.
apply closure_closed.
Qed.
Lemma filter_cluster_point_impl_compact:
forall X:TopologicalSpace,
(forall F:Filter (point_set X), exists x0:point_set X,
filter_cluster_point F x0) -> compact X.
Proof.
intros.
apply finite_nonempty_closed_intersection_impl_compact.
intros.
let H:=fresh in
refine (let H:=_ in let filt := Build_Filter_from_subbasis F H in _).
intros.
rewrite indexed_to_family_intersection.
apply H1.
apply FiniteT_img; trivial.
intros; apply classic.
red; intros.
destruct H4.
rewrite H5; apply H3.
assert (filter_subbasis filt F) by apply filter_from_subbasis_subbasis.
destruct (H filt) as [x0].
exists x0.
constructor; intros.
assert (closed S) by (apply H0; trivial).
assert (In (filter_family filt) S).
apply (filter_subbasis_elements _ _ H3); trivial.
pose proof (H4 _ H7).
rewrite closure_fixes_closed in H8; trivial.
Qed.
Lemma ultrafilter_limit_impl_compact:
forall X:TopologicalSpace,
(forall U:Filter (point_set X), ultrafilter U ->
exists x0:point_set X, filter_limit U x0) -> compact X.
Proof.
intros.
apply filter_cluster_point_impl_compact.
intros.
destruct (ultrafilter_extension F) as [U].
destruct H0.
destruct (H _ H1) as [x0].
exists x0.
red; intros.
apply filter_limit_is_cluster_point in H2.
apply H0 in H3.
apply H2; trivial.
Qed.
Lemma compact_impl_net_cluster_point:
forall X:TopologicalSpace, compact X ->
forall (I:DirectedSet) (x:Net I X), inhabited (DS_set I) ->
exists x0:point_set X, net_cluster_point x x0.
Proof.
Require Import FiltersAndNets.
intros.
destruct (compact_impl_filter_cluster_point
_ H (tail_filter x H0)) as [x0].
exists x0.
apply tail_filter_cluster_point_impl_net_cluster_point with H0.
apply H1.
Qed.
Lemma net_cluster_point_impl_compact: forall X:TopologicalSpace,
(forall (I:DirectedSet) (x:Net I X), inhabited (DS_set I) ->
exists x0:point_set X, net_cluster_point x x0) ->
compact X.
Proof.
intros.
apply filter_cluster_point_impl_compact.
intros.
destruct (H _ (filter_to_net _ F)) as [x0].
cut (inhabited (point_set X)).
intro.
destruct H0 as [x].
exists.
simpl.
apply Build_filter_to_net_DS_set with Full_set x.
apply filter_full.
constructor.
apply NNPP; intro.
contradiction (filter_empty _ F).
replace (@Empty_set (point_set X)) with (@Full_set (point_set X)).
apply filter_full.
apply Extensionality_Ensembles; split; red; intros.
contradiction H0.
exists; exact x.
destruct H1.
exists x0.
apply filter_to_net_cluster_point_impl_filter_cluster_point.
trivial.
Qed.
Require Export SeparatednessAxioms.
Require Export SubspaceTopology.
Lemma compact_closed: forall (X:TopologicalSpace)
(S:Ensemble (point_set X)), Hausdorff X ->
compact (SubspaceTopology S) -> closed S.
Proof.
intros.
destruct (classic (Inhabited S)).
assert (closure S = S).
apply Extensionality_Ensembles; split.
red; intros.
destruct (net_limits_determine_topology _ _ H2) as [I0 [y []]].
pose (yS (i:DS_set I0) := exist (fun x:point_set X => In S x) (y i) (H3 i)).
assert (inhabited (point_set (SubspaceTopology S))).
destruct H1.
exists.
exists x0; trivial.
assert (inhabited (DS_set I0)) as HinhI0.
red in H4.
destruct (H4 Full_set) as [i0]; auto with topology.
constructor.
pose proof (compact_impl_net_cluster_point
(SubspaceTopology S) H0 _ yS HinhI0).
destruct H6 as [[x0]].
apply net_cluster_point_impl_subnet_converges in H6.
destruct H6 as [J [y' []]].
destruct H6.
assert (net_limit (fun j:DS_set J => y (h j)) x0).
apply continuous_func_preserves_net_limits with
(f:=subspace_inc S) (Y:=X) in H7.
simpl in H7.
assumption.
apply continuous_func_continuous_everywhere.
apply subspace_inc_continuous.
assert (net_limit (fun j:DS_set J => y (h j)) x).
apply subnet_limit with I0 y; trivial.
constructor; trivial.
assert (x = x0).
exact (Hausdorff_impl_net_limit_unique _ H _ _ H10 H9).
rewrite H11; trivial.
destruct (H4 Full_set).
apply open_full.
constructor.
exists; exact x1.
destruct H1.
apply closure_inflationary.
rewrite <- H2; apply closure_closed.
red.
assert (Complement S = Full_set).
apply Extensionality_Ensembles; split; red; intros.
constructor.
red; intro.
contradiction H1; exists x; trivial.
rewrite H2; apply open_full.
Qed.
Lemma closed_compact: forall (X:TopologicalSpace) (S:Ensemble (point_set X)),
compact X -> closed S -> compact (SubspaceTopology S).
Proof.
intros.
apply net_cluster_point_impl_compact.
intros.
destruct (compact_impl_net_cluster_point _ H
_ (fun i:DS_set I => subspace_inc _ (x i))) as [x0].
trivial.
assert (In S x0).
rewrite <- (closure_fixes_closed S); trivial.
apply net_cluster_point_in_closure with
(2:=H2).
destruct H1 as [i0].
exists i0.
intros.
destruct (x j).
simpl.
trivial.
exists (exist _ x0 H3).
red; intros.
red; intros.
destruct (subspace_topology_topology _ _ _ H4) as [V []].
rewrite H7 in H5.
destruct H5.
simpl in H5.
destruct (H2 V H6 H5 i) as [j []]; trivial.
exists j; split; trivial.
rewrite H7.
constructor.
trivial.
Qed.
Lemma compact_image: forall {X Y:TopologicalSpace}
(f:point_set X->point_set Y),
compact X -> continuous f -> surjective f -> compact Y.
Proof.
intros.
red; intros.
pose (B := fun U:{U:Ensemble (point_set Y) | In C U} =>
inverse_image f (proj1_sig U)).
destruct (compactness_on_indexed_covers _ _ B H) as [subcover].
destruct a as [U].
unfold B; simpl.
apply H0.
apply H2; trivial.
apply Extensionality_Ensembles; split; red; intros.
constructor.
assert (In (FamilyUnion C) (f x)).
rewrite H3; constructor.
inversion_clear H5 as [V].
exists (exist _ V H6).
unfold B; simpl.
constructor; trivial.
destruct H4.
exists (Im subcover (@proj1_sig _ (fun U:Ensemble (point_set Y) => In C U))).
repeat split.
apply finite_image; trivial.
red; intros V ?.
destruct H6 as [[U]].
simpl in H7.
congruence.
apply Extensionality_Ensembles; split; red; intros y ?.
constructor.
destruct (H1 y) as [x].
assert (In (IndexedUnion
(fun a':{a' | In subcover a'} => B (proj1_sig a'))) x).
rewrite H5; constructor.
destruct H8 as [[[U]]].
exists U.
simpl in H8.
exists (exist _ U i); trivial.
unfold B in H8; simpl in H8.
destruct H8.
congruence.
Qed.
Lemma compact_Hausdorff_impl_normal_sep: forall X:TopologicalSpace,
compact X -> Hausdorff X -> normal_sep X.
Proof.
intros.
assert (T3_sep X).
Require Import ClassicalChoice.
destruct (choice (fun (xy:{xy:point_set X * point_set X |
let (x,y):=xy in x <> y})
(UV:Ensemble (point_set X) * Ensemble (point_set X)) =>
match xy with | exist (x,y) i =>
let (U,V):=UV in
open U /\ open V /\ In U x /\ In V y /\ Intersection U V = Empty_set
end)) as
[choice_fun].
destruct x as [[x y] i].
destruct (H0 _ _ i) as [U [V]].
exists (U, V); trivial.
pose (choice_fun_U := fun (x y:point_set X)
(Hineq:x<>y) => fst (choice_fun (exist _ (x,y) Hineq))).
pose (choice_fun_V := fun (x y:point_set X)
(Hineq:x<>y) => snd (choice_fun (exist _ (x,y) Hineq))).
assert (forall (x y:point_set X) (Hineq:x<>y),
open (choice_fun_U x y Hineq) /\
open (choice_fun_V x y Hineq) /\
In (choice_fun_U x y Hineq) x /\
In (choice_fun_V x y Hineq) y /\
Intersection (choice_fun_U x y Hineq) (choice_fun_V x y Hineq) = Empty_set).
intros.
unfold choice_fun_U; unfold choice_fun_V.
pose proof (H1 (exist _ (x,y) Hineq)).
destruct (choice_fun (exist _ (x,y) Hineq)).
exact H2.
clearbody choice_fun_U choice_fun_V; clear choice_fun H1.
split.
apply Hausdorff_impl_T1_sep; trivial.
intros.
pose proof (closed_compact _ _ H H1).
assert (forall y:point_set X, In F y -> x <> y).
intros.
congruence.
pose (cover := fun (y:point_set (SubspaceTopology F)) =>
let (y,i):=y in inverse_image (subspace_inc F)
(choice_fun_V x y (H5 y i))).
destruct (compactness_on_indexed_covers _ _ cover H4) as [subcover].
destruct a as [y i].
apply subspace_inc_continuous.
apply H2.
apply Extensionality_Ensembles; split; red; intros y ?.
constructor.
exists y.
destruct y as [y i].
simpl.
constructor.
simpl.
apply H2.
destruct H6.
exists (IndexedIntersection
(fun y:{y:point_set (SubspaceTopology F) | In subcover y} =>
let (y,_):=y in let (y,i):=y in choice_fun_U x y (H5 y i))).
exists (IndexedUnion
(fun y:{y:point_set (SubspaceTopology F) | In subcover y} =>
let (y,_):=y in let (y,i):=y in choice_fun_V x y (H5 y i))).
repeat split.
apply open_finite_indexed_intersection.
apply Finite_ens_type; trivial.
destruct a as [[y]].
apply H2.
apply open_indexed_union.
destruct a as [[y]].
apply H2.
destruct a as [[y]].
apply H2.
red; intros y ?.
assert (In (IndexedUnion
(fun y:{y:point_set (SubspaceTopology F) | In subcover y} =>
cover (proj1_sig y))) (exist _ y H8)).
rewrite H7; constructor.
remember (exist (In F) y H8) as ysig.
destruct H9 as [[y']].
rewrite Heqysig in H9; clear x0 Heqysig.
simpl in H9.
destruct y' as [y'].
simpl in H9.
destruct H9.
simpl in H9.
exists (exist _ (exist _ y' i0) i).
trivial.
apply Extensionality_Ensembles; split; auto with sets; red; intros y ?.
destruct H8.
destruct H8.
destruct H9.
pose proof (H8 a).
destruct a as [[y]].
replace (@Empty_set (point_set X)) with
(Intersection (choice_fun_U x y (H5 y i))
(choice_fun_V x y (H5 y i))).
constructor; trivial.
apply H2.
destruct (choice (fun (xF:{p:point_set X * Ensemble (point_set X) |
let (x,F):=p in closed F /\ ~ In F x})
(UV:Ensemble (point_set X) * Ensemble (point_set X)) =>
let (p,i):=xF in let (x,F):=p in
let (U,V):=UV in
open U /\ open V /\ In U x /\ Included F V /\
Intersection U V = Empty_set)) as [choice_fun].
destruct x as [[x F] []].
destruct H1.
destruct (H4 x F H2 H3) as [U [V]].
exists (U,V); trivial.
pose (choice_fun_U := fun (x:point_set X) (F:Ensemble (point_set X))
(HC:closed F) (Hni:~ In F x) =>
fst (choice_fun (exist _ (x,F) (conj HC Hni)))).
pose (choice_fun_V := fun (x:point_set X) (F:Ensemble (point_set X))
(HC:closed F) (Hni:~ In F x) =>
snd (choice_fun (exist _ (x,F) (conj HC Hni)))).
assert (forall (x:point_set X) (F:Ensemble (point_set X))
(HC:closed F) (Hni:~ In F x),
open (choice_fun_U x F HC Hni) /\
open (choice_fun_V x F HC Hni) /\
In (choice_fun_U x F HC Hni) x /\
Included F (choice_fun_V x F HC Hni) /\
Intersection (choice_fun_U x F HC Hni) (choice_fun_V x F HC Hni) =
Empty_set).
intros.
pose proof (H2 (exist _ (x,F) (conj HC Hni))).
unfold choice_fun_U; unfold choice_fun_V;
destruct (choice_fun (exist _ (x,F) (conj HC Hni))); trivial.
clearbody choice_fun_U choice_fun_V; clear choice_fun H2.
split.
apply H1.
intros.
pose proof (closed_compact _ _ H H2).
assert (forall x:point_set X, In F x -> ~ In G x).
intros.
intro.
absurd (In Empty_set x).
red; destruct 1.
rewrite <- H5; split; trivial.
pose (cover := fun x:point_set (SubspaceTopology F) =>
let (x,i):=x in inverse_image (subspace_inc F)
(choice_fun_U x G H4 (H7 x i))).
destruct (compactness_on_indexed_covers _ _ cover H6) as [subcover].
destruct a as [x i].
apply subspace_inc_continuous.
apply H3.
apply Extensionality_Ensembles; split; red; intros.
constructor.
exists x.
destruct x.
simpl cover.
constructor.
simpl.
apply H3.
destruct H8.
exists (IndexedUnion
(fun x:{x:point_set (SubspaceTopology F) | In subcover x} =>
let (x,i):=proj1_sig x in choice_fun_U x G H4 (H7 x i))).
exists (IndexedIntersection
(fun x:{x:point_set (SubspaceTopology F) | In subcover x} =>
let (x,i):=proj1_sig x in choice_fun_V x G H4 (H7 x i))).
repeat split.
apply open_indexed_union.
destruct a as [[x]].
simpl.
apply H3.
apply open_finite_indexed_intersection.
apply Finite_ens_type; trivial.
destruct a as [[x]].
simpl.
apply H3.
intros x ?.
assert (In (@Full_set (point_set (SubspaceTopology F))) (exist _ x H10))
by constructor.
rewrite <- H9 in H11.
remember (exist _ x H10) as xsig.
destruct H11.
destruct a as [x'].
destruct x' as [x'].
rewrite Heqxsig in H11; clear x0 Heqxsig.
simpl in H11.
destruct H11.
simpl in H11.
exists (exist _ (exist _ x' i0) i).
simpl.
trivial.
destruct a as [x'].
simpl.
destruct x' as [x'].
assert (Included G (choice_fun_V x' G H4 (H7 x' i0))) by apply H3.
auto.
apply Extensionality_Ensembles; split; auto with sets; red; intros.
destruct H10.
destruct H10.
destruct H11.
pose proof (H11 a).
destruct a as [[x']].
simpl in H12.
simpl in H10.
replace (@Empty_set (point_set X)) with (Intersection
(choice_fun_U x' G H4 (H7 x' i))
(choice_fun_V x' G H4 (H7 x' i))).
constructor; trivial.
apply H3.
Qed.