-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFilterLimits.v
215 lines (198 loc) · 4.95 KB
/
FilterLimits.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Require Export TopologicalSpaces.
Require Export Filters.
Require Export Neighborhoods.
Definition neighborhood_filter {X:TopologicalSpace} (x0:point_set X) :
Filter (point_set X).
refine (Build_Filter _
[ N:Ensemble (point_set X) | neighborhood N x0 ]
_ _ _ _).
intros.
destruct H; destruct H0; constructor.
destruct H as [U []].
destruct H0 as [V []].
destruct H.
destruct H0.
exists (Intersection U V); split.
split.
apply open_intersection2; trivial.
constructor; trivial.
red; intros.
destruct H5; constructor; auto.
intros.
destruct H.
destruct H as [U [[]]].
constructor.
exists U; repeat split; trivial.
auto with sets.
constructor.
exists Full_set; repeat split; auto with sets topology.
red; intro.
destruct H.
destruct H as [U [[]]].
apply H1 in H0.
destruct H0.
Defined.
Definition filter_limit {X:TopologicalSpace} (F:Filter (point_set X))
(x0:point_set X) : Prop :=
Included (filter_family (neighborhood_filter x0))
(filter_family F).
Definition filter_cluster_point {X:TopologicalSpace}
(F:Filter (point_set X)) (x0:point_set X) : Prop :=
forall S:Ensemble (point_set X), In (filter_family F) S ->
In (closure S) x0.
Lemma filter_limit_is_cluster_point:
forall {X:TopologicalSpace} (F:Filter (point_set X)) (x0:point_set X),
filter_limit F x0 -> filter_cluster_point F x0.
Proof.
intros.
red; intros.
apply meets_every_open_neighborhood_impl_closure.
intros.
assert (In (filter_family F) U).
apply H.
simpl.
constructor.
exists U; repeat split; auto with sets.
assert (In (filter_family F) (Intersection S U)).
apply filter_intersection; trivial.
apply NNPP; red; intro.
assert (Intersection S U = Empty_set).
apply Extensionality_Ensembles; split; red; intros.
contradiction H5.
exists x; trivial.
destruct H6.
rewrite H6 in H4.
contradiction (filter_empty _ F).
Qed.
Lemma ultrafilter_cluster_point_is_limit: forall {X:TopologicalSpace}
(F:Filter (point_set X)) (x0:point_set X),
filter_cluster_point F x0 -> ultrafilter F ->
filter_limit F x0.
Proof.
intros.
red.
red; intros N ?.
destruct H1.
destruct H1 as [U [[]]].
cut (In (filter_family F) U).
intros; apply filter_upward_closed with U; trivial.
clear N H3.
apply NNPP; intro.
assert (In (filter_family F) (Complement U)).
pose proof (H0 U).
tauto.
pose proof (H _ H4).
rewrite closure_fixes_closed in H5.
contradiction H5; trivial.
red; rewrite Complement_Complement; trivial.
Qed.
Lemma closure_impl_filter_limit: forall {X:TopologicalSpace}
(S:Ensemble (point_set X)) (x0:point_set X),
In (closure S) x0 ->
exists F:Filter (point_set X),
In (filter_family F) S /\ filter_limit F x0.
Proof.
intros.
assert (Inhabited S).
destruct (closure_impl_meets_every_open_neighborhood _ _ _ H
Full_set).
apply open_full.
constructor.
destruct H0.
exists x; trivial.
refine (let H1:=_ in let H2:=_ in let H3:=_ in
let Sfilt := Build_Filter_from_basis (Singleton S)
H1 H2 H3 in _).
exists S; constructor.
red; intro.
inversion H2.
rewrite H3 in H0.
destruct H0.
destruct H0.
intros.
destruct H3.
destruct H4.
exists S; split; auto with sets.
refine (let H4:=_ in
ex_intro _ (filter_sum (neighborhood_filter x0) Sfilt H4) _).
intros.
simpl in H4.
destruct H4.
destruct H4 as [U [[]]].
simpl in H5.
destruct H5.
destruct H5 as [T0 []].
destruct H5.
destruct (closure_impl_meets_every_open_neighborhood
_ _ _ H U); trivial.
destruct H5.
exists x; constructor; auto.
split.
simpl.
constructor.
exists S.
split; auto with sets.
exists ( (Full_set, S) ).
constructor; split.
constructor.
exists Full_set; repeat split.
apply open_full.
constructor.
exists S; split; auto with sets.
apply Extensionality_Ensembles; split; red; intros.
constructor; trivial; constructor.
destruct H5; trivial.
red; red; intros U ?.
constructor.
exists U.
split; auto with sets.
exists ( (U, Full_set) ).
constructor.
split; trivial.
constructor.
exists S; split; auto with sets.
red; intros; constructor.
apply Extensionality_Ensembles; split; red; intros.
constructor; trivial; constructor.
destruct H6; trivial.
Qed.
Require Export Continuity.
Lemma continuous_function_preserves_filter_limits:
forall (X Y:TopologicalSpace) (f:point_set X -> point_set Y)
(x:point_set X) (F:Filter (point_set X)),
filter_limit F x -> continuous_at f x ->
filter_limit (filter_direct_image f F) (f x).
Proof.
intros.
red; intros.
intros V ?.
destruct H1.
constructor.
cut (In (filter_family (neighborhood_filter x))
(inverse_image f V)).
apply H.
constructor.
apply H0; trivial.
Qed.
Lemma func_preserving_filter_limits_is_continuous:
forall (X Y:TopologicalSpace) (f:point_set X -> point_set Y)
(x:point_set X),
(forall F:Filter (point_set X), filter_limit F x ->
filter_limit (filter_direct_image f F) (f x)) ->
continuous_at f x.
Proof.
intros.
assert (filter_limit (filter_direct_image f (neighborhood_filter x))
(f x)).
apply H.
red; auto with sets.
red; intros V ?.
assert (In (filter_family (filter_direct_image f (neighborhood_filter x)))
V).
apply H0.
constructor.
trivial.
destruct H2.
destruct H2.
trivial.
Qed.