-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeparatednessAxioms.v
213 lines (196 loc) · 5.47 KB
/
SeparatednessAxioms.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
Require Export TopologicalSpaces.
Require Import InteriorsClosures.
Definition T0_sep (X:TopologicalSpace) : Prop :=
forall x y:point_set X, x <> y ->
(exists U:Ensemble (point_set X), open U /\ In U x /\ ~ In U y) \/
(exists U:Ensemble (point_set X), open U /\ ~ In U x /\ In U y).
Definition T1_sep (X:TopologicalSpace) : Prop :=
forall x:point_set X, closed (Singleton x).
Definition Hausdorff (X:TopologicalSpace) : Prop :=
forall x y:point_set X, x <> y ->
exists U:Ensemble (point_set X),
exists V:Ensemble (point_set X),
open U /\ open V /\ In U x /\ In V y /\
Intersection U V = Empty_set.
Definition T2_sep := Hausdorff.
Definition T3_sep (X:TopologicalSpace) : Prop :=
T1_sep X /\
forall (x:point_set X) (F:Ensemble (point_set X)),
closed F -> ~ In F x -> exists U:Ensemble (point_set X),
exists V:Ensemble (point_set X),
open U /\ open V /\ In U x /\ Included F V /\
Intersection U V = Empty_set.
Definition normal_sep (X:TopologicalSpace) : Prop :=
T1_sep X /\
forall (F G:Ensemble (point_set X)),
closed F -> closed G -> Intersection F G = Empty_set ->
exists U:Ensemble (point_set X), exists V:Ensemble (point_set X),
open U /\ open V /\ Included F U /\ Included G V /\
Intersection U V = Empty_set.
Definition T4_sep := normal_sep.
Lemma T1_sep_impl_T0_sep: forall X:TopologicalSpace,
T1_sep X -> T0_sep X.
Proof.
intros.
red; intros.
left.
exists (Complement (Singleton y)); repeat split.
apply H.
repeat red; intro.
destruct H1; contradiction H0; trivial.
red; intro.
repeat red in H1.
apply H1; constructor.
Qed.
Lemma Hausdorff_impl_T1_sep: forall X:TopologicalSpace,
Hausdorff X -> T1_sep X.
Proof.
intros.
red; intros.
assert (closure (Singleton x) = Singleton x).
apply Extensionality_Ensembles; split.
red; intros.
assert (x = x0).
apply NNPP.
red; intro.
pose proof (H x x0 H1).
destruct H2 as [U [V ?]].
intuition.
assert (In (interior (Complement (Singleton x))) x0).
exists V.
constructor; split; trivial.
red; intros.
red; red; intro.
destruct H8.
assert (In Empty_set x).
rewrite <- H7.
constructor; trivial.
destruct H8.
assumption.
rewrite interior_complement in H6.
contradiction H6; exact H0.
destruct H1; constructor.
apply closure_inflationary.
rewrite <- H0; apply closure_closed.
Qed.
Lemma T3_sep_impl_Hausdorff: forall X:TopologicalSpace,
T3_sep X -> Hausdorff X.
Proof.
intros.
destruct H.
red; intros.
pose proof (H0 x (Singleton y)).
match type of H2 with | ?A -> ?B -> ?C => assert C end.
apply H2.
apply H.
red; intro.
destruct H3.
contradiction H1; trivial.
destruct H3 as [U [V [? [? [? [? ?]]]]]].
exists U; exists V; repeat split; auto with sets.
Qed.
Lemma normal_sep_impl_T3_sep: forall X:TopologicalSpace,
normal_sep X -> T3_sep X.
Proof.
intros.
destruct H.
split; trivial.
intros.
pose proof (H0 (Singleton x) F).
match type of H3 with | ?A -> ?B -> ?C -> ?D => assert D end.
apply H3; trivial.
apply Extensionality_Ensembles; split; auto with sets.
red; intros.
destruct H4 as [? []].
contradiction H2.
destruct H4 as [U [V [? [? [? [? ?]]]]]].
exists U; exists V; repeat split; auto with sets.
Qed.
Section Hausdorff_and_nets.
Require Export Nets.
Lemma Hausdorff_impl_net_limit_unique:
forall {X:TopologicalSpace} {I:DirectedSet} (x:Net I X),
Hausdorff X -> uniqueness (net_limit x).
Proof.
intros.
red; intros x1 x2 ? ?.
apply NNPP; intro.
destruct (H x1 x2) as [U [V [? [? [? [? ?]]]]]]; trivial.
destruct (H0 U H3 H5) as [i].
destruct (H1 V H4 H6) as [j].
destruct (DS_join_cond i j) as [k [? ?]].
assert (In (Intersection U V) (x k)).
constructor; (apply H8 || apply H9); trivial.
rewrite H7 in H12.
destruct H12.
Qed.
Lemma Hausdorff_impl_net_limit_is_unique_cluster_point:
forall {X:TopologicalSpace} {I:DirectedSet} (x:Net I X)
(x0:point_set X), Hausdorff X -> net_limit x x0 ->
forall y:point_set X, net_cluster_point x y -> y = x0.
Proof.
intros.
destruct (net_cluster_point_impl_subnet_converges _ _ x y H1) as
[J [x' [? ?]]].
destruct (H0 Full_set).
apply open_full.
constructor.
exists; exact x1.
assert (net_limit x' x0).
apply subnet_limit with _ x; trivial.
apply Hausdorff_impl_net_limit_unique with x'; trivial.
Qed.
Lemma net_limit_is_unique_cluster_point_impl_Hausdorff:
forall (X:TopologicalSpace),
(forall (I:DirectedSet) (x:Net I X) (x0 y:point_set X),
net_limit x x0 -> net_cluster_point x y ->
y = x0) -> Hausdorff X.
Proof.
intros.
red; intros.
assert (~ net_cluster_point (neighborhood_net _ x) y).
red; intro.
contradiction H0.
symmetry.
apply H with _ (neighborhood_net _ x).
apply neighborhood_net_limit.
assumption.
apply not_all_ex_not in H1.
destruct H1 as [V].
apply imply_to_and in H1.
destruct H1.
apply imply_to_and in H2.
destruct H2.
apply not_all_ex_not in H3.
destruct H3 as [[U]].
exists U; exists V; repeat split; trivial.
apply Extensionality_Ensembles; split; auto with sets.
red; intros.
destruct H4.
contradiction H3.
exists (intro_neighborhood_net_DS X x U x0 o i H4).
split.
simpl; auto with sets.
simpl.
trivial.
Qed.
Lemma net_limit_uniqueness_impl_Hausdorff:
forall X:TopologicalSpace,
(forall (I:DirectedSet) (x:Net I X), uniqueness (net_limit x)) ->
Hausdorff X.
Proof.
intros.
apply net_limit_is_unique_cluster_point_impl_Hausdorff.
intros.
pose proof (net_cluster_point_impl_subnet_converges _ _ _ _ H1).
destruct H2 as [J [x' [? ?]]].
destruct (H0 Full_set).
apply open_full.
constructor.
exists; exact x1.
assert (net_limit x' x0).
apply subnet_limit with _ x; trivial.
unfold uniqueness in H.
apply H with _ x'; trivial.
Qed.
End Hausdorff_and_nets.