forked from weka511/bioinformatics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBA10H.py
97 lines (77 loc) · 3.94 KB
/
BA10H.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
# Copyright (C) 2020 Greenweaves Software Limited
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# BA10H Estimate the Parameters of an HMM
import argparse
import os
import time
from helpers import read_strings
from hmm import float2str,EstimateParameters
# formatEmission
def formatEmission(Emission,States,Alphabet,precision=2):
yield '\t'+'\t'.join(Alphabet)
for state in States:
row = []
for symbol in Alphabet:
probability = Emission[(symbol,state)]
row.append(float2str(probability,precision))
yield state + '\t' + '\t'.join(row)
# formatTransition
def formatTransition(Transition,States,precision=2):
yield '\t'+ '\t'.join(state for state in States)
for state1 in States:
row = []
for state2 in States:
probability = Transition[(state1,state2)] if (state1,state2) in Transition else 0
row.append(float2str(probability,precision))
yield state1 + '\t' + '\t'.join(row)
if __name__=='__main__':
start = time.time()
parser = argparse.ArgumentParser('BA10H Estimate the Parameters of an HMM ')
parser.add_argument('--sample', default=False, action='store_true', help='process sample dataset')
parser.add_argument('--extra', default=False, action='store_true', help='process extra dataset')
parser.add_argument('--rosalind', default=False, action='store_true', help='process Rosalind dataset')
parser.add_argument('--precision', default=3, help='Controls display of probabilities')
args = parser.parse_args()
if args.sample:
Transitions,Emissions = EstimateParameters('yzzzyxzxxx',
['x', 'y', 'z'],
'BBABABABAB',
['A', 'B', 'C'])
for row in formatTransition(Transitions,['A', 'B', 'C'],precision=args.precision):
print (row)
for row in formatEmission(Emissions,['A', 'B', 'C'], ['x', 'y', 'z'],precision=args.precision):
print (row)
if args.extra:
Input,Expected = read_strings(f'data/HMMParameterEstimation.txt',init=0)
Transitions,Emissions = EstimateParameters(Input[0],Input[2].split(),Input[4],Input[6].split())
for row in formatTransition(Transitions,Input[6].split(),precision=args.precision):
print (row)
print ('--------')
for row in formatEmission(Emissions,Input[6].split(), Input[2].split(),precision=args.precision):
print (row)
if args.rosalind:
Input = read_strings(f'data/rosalind_{os.path.basename(__file__).split(".")[0]}.txt')
Transitions,Emissions = EstimateParameters(Input[0],Input[2].split(),Input[4],Input[6].split())
with open(f'{os.path.basename(__file__).split(".")[0]}.txt','w') as f:
for row in formatTransition(Transitions,Input[6].split(),precision=args.precision):
print (row)
f.write(f'{row}\n')
print ('--------')
f.write('--------\n')
for row in formatEmission(Emissions,Input[6].split(), Input[2].split(),precision=args.precision):
print (row)
f.write(f'{row}\n')
elapsed = time.time() - start
minutes = int(elapsed/60)
seconds = elapsed - 60*minutes
print (f'Elapsed Time {minutes} m {seconds:.2f} s')