forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
308 lines (240 loc) · 10.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
"""Model using memory component.
The model embeds images using a standard CNN architecture.
These embeddings are used as keys to the memory component,
which returns nearest neighbors.
"""
import tensorflow as tf
import memory
FLAGS = tf.flags.FLAGS
class BasicClassifier(object):
def __init__(self, output_dim):
self.output_dim = output_dim
def core_builder(self, memory_val, x, y):
del x, y
y_pred = memory_val
loss = 0.0
return loss, y_pred
class LeNet(object):
"""Standard CNN architecture."""
def __init__(self, image_size, num_channels, hidden_dim):
self.image_size = image_size
self.num_channels = num_channels
self.hidden_dim = hidden_dim
self.matrix_init = tf.truncated_normal_initializer(stddev=0.1)
self.vector_init = tf.constant_initializer(0.0)
def core_builder(self, x):
"""Embeds x using standard CNN architecture.
Args:
x: Batch of images as a 2-d Tensor [batch_size, -1].
Returns:
A 2-d Tensor [batch_size, hidden_dim] of embedded images.
"""
ch1 = 32 * 2 # number of channels in 1st layer
ch2 = 64 * 2 # number of channels in 2nd layer
conv1_weights = tf.get_variable('conv1_w',
[3, 3, self.num_channels, ch1],
initializer=self.matrix_init)
conv1_biases = tf.get_variable('conv1_b', [ch1],
initializer=self.vector_init)
conv1a_weights = tf.get_variable('conv1a_w',
[3, 3, ch1, ch1],
initializer=self.matrix_init)
conv1a_biases = tf.get_variable('conv1a_b', [ch1],
initializer=self.vector_init)
conv2_weights = tf.get_variable('conv2_w', [3, 3, ch1, ch2],
initializer=self.matrix_init)
conv2_biases = tf.get_variable('conv2_b', [ch2],
initializer=self.vector_init)
conv2a_weights = tf.get_variable('conv2a_w', [3, 3, ch2, ch2],
initializer=self.matrix_init)
conv2a_biases = tf.get_variable('conv2a_b', [ch2],
initializer=self.vector_init)
# fully connected
fc1_weights = tf.get_variable(
'fc1_w', [self.image_size // 4 * self.image_size // 4 * ch2,
self.hidden_dim], initializer=self.matrix_init)
fc1_biases = tf.get_variable('fc1_b', [self.hidden_dim],
initializer=self.vector_init)
# define model
x = tf.reshape(x,
[-1, self.image_size, self.image_size, self.num_channels])
batch_size = tf.shape(x)[0]
conv1 = tf.nn.conv2d(x, conv1_weights,
strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
conv1 = tf.nn.conv2d(relu1, conv1a_weights,
strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1a_biases))
pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.conv2d(pool1, conv2_weights,
strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
conv2 = tf.nn.conv2d(relu2, conv2a_weights,
strides=[1, 1, 1, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2a_biases))
pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
reshape = tf.reshape(pool2, [batch_size, -1])
hidden = tf.matmul(reshape, fc1_weights) + fc1_biases
return hidden
class Model(object):
"""Model for coordinating between CNN embedder and Memory module."""
def __init__(self, input_dim, output_dim, rep_dim, memory_size, vocab_size,
learning_rate=0.0001, use_lsh=False):
self.input_dim = input_dim
self.output_dim = output_dim
self.rep_dim = rep_dim
self.memory_size = memory_size
self.vocab_size = vocab_size
self.learning_rate = learning_rate
self.use_lsh = use_lsh
self.embedder = self.get_embedder()
self.memory = self.get_memory()
self.classifier = self.get_classifier()
self.global_step = tf.contrib.framework.get_or_create_global_step()
def get_embedder(self):
return LeNet(int(self.input_dim ** 0.5), 1, self.rep_dim)
def get_memory(self):
cls = memory.LSHMemory if self.use_lsh else memory.Memory
return cls(self.rep_dim, self.memory_size, self.vocab_size)
def get_classifier(self):
return BasicClassifier(self.output_dim)
def core_builder(self, x, y, keep_prob, use_recent_idx=True):
embeddings = self.embedder.core_builder(x)
if keep_prob < 1.0:
embeddings = tf.nn.dropout(embeddings, keep_prob)
memory_val, _, teacher_loss = self.memory.query(
embeddings, y, use_recent_idx=use_recent_idx)
loss, y_pred = self.classifier.core_builder(memory_val, x, y)
return loss + teacher_loss, y_pred
def train(self, x, y):
loss, _ = self.core_builder(x, y, keep_prob=0.3)
gradient_ops = self.training_ops(loss)
return loss, gradient_ops
def eval(self, x, y):
_, y_preds = self.core_builder(x, y, keep_prob=1.0,
use_recent_idx=False)
return y_preds
def get_xy_placeholders(self):
return (tf.placeholder(tf.float32, [None, self.input_dim]),
tf.placeholder(tf.int32, [None]))
def setup(self):
"""Sets up all components of the computation graph."""
self.x, self.y = self.get_xy_placeholders()
with tf.variable_scope('core', reuse=None):
self.loss, self.gradient_ops = self.train(self.x, self.y)
with tf.variable_scope('core', reuse=True):
self.y_preds = self.eval(self.x, self.y)
# setup memory "reset" ops
(self.mem_keys, self.mem_vals,
self.mem_age, self.recent_idx) = self.memory.get()
self.mem_keys_reset = tf.placeholder(self.mem_keys.dtype,
tf.identity(self.mem_keys).shape)
self.mem_vals_reset = tf.placeholder(self.mem_vals.dtype,
tf.identity(self.mem_vals).shape)
self.mem_age_reset = tf.placeholder(self.mem_age.dtype,
tf.identity(self.mem_age).shape)
self.recent_idx_reset = tf.placeholder(self.recent_idx.dtype,
tf.identity(self.recent_idx).shape)
self.mem_reset_op = self.memory.set(self.mem_keys_reset,
self.mem_vals_reset,
self.mem_age_reset,
None)
def training_ops(self, loss):
opt = self.get_optimizer()
params = tf.trainable_variables()
gradients = tf.gradients(loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
return opt.apply_gradients(zip(clipped_gradients, params),
global_step=self.global_step)
def get_optimizer(self):
return tf.train.AdamOptimizer(learning_rate=self.learning_rate,
epsilon=1e-4)
def one_step(self, sess, x, y):
outputs = [self.loss, self.gradient_ops]
return sess.run(outputs, feed_dict={self.x: x, self.y: y})
def episode_step(self, sess, x, y, clear_memory=False):
"""Performs training steps on episodic input.
Args:
sess: A Tensorflow Session.
x: A list of batches of images defining the episode.
y: A list of batches of labels corresponding to x.
clear_memory: Whether to clear the memory before the episode.
Returns:
List of losses the same length as the episode.
"""
outputs = [self.loss, self.gradient_ops]
if clear_memory:
self.clear_memory(sess)
losses = []
for xx, yy in zip(x, y):
out = sess.run(outputs, feed_dict={self.x: xx, self.y: yy})
loss = out[0]
losses.append(loss)
return losses
def predict(self, sess, x, y=None):
"""Predict the labels on a single batch of examples.
Args:
sess: A Tensorflow Session.
x: A batch of images.
y: The labels for the images in x.
This allows for updating the memory.
Returns:
Predicted y.
"""
cur_memory = sess.run([self.mem_keys, self.mem_vals,
self.mem_age])
outputs = [self.y_preds]
if y is None:
ret = sess.run(outputs, feed_dict={self.x: x})
else:
ret = sess.run(outputs, feed_dict={self.x: x, self.y: y})
sess.run([self.mem_reset_op],
feed_dict={self.mem_keys_reset: cur_memory[0],
self.mem_vals_reset: cur_memory[1],
self.mem_age_reset: cur_memory[2]})
return ret
def episode_predict(self, sess, x, y, clear_memory=False):
"""Predict the labels on an episode of examples.
Args:
sess: A Tensorflow Session.
x: A list of batches of images.
y: A list of labels for the images in x.
This allows for updating the memory.
clear_memory: Whether to clear the memory before the episode.
Returns:
List of predicted y.
"""
cur_memory = sess.run([self.mem_keys, self.mem_vals,
self.mem_age])
if clear_memory:
self.clear_memory(sess)
outputs = [self.y_preds]
y_preds = []
for xx, yy in zip(x, y):
out = sess.run(outputs, feed_dict={self.x: xx, self.y: yy})
y_pred = out[0]
y_preds.append(y_pred)
sess.run([self.mem_reset_op],
feed_dict={self.mem_keys_reset: cur_memory[0],
self.mem_vals_reset: cur_memory[1],
self.mem_age_reset: cur_memory[2]})
return y_preds
def clear_memory(self, sess):
sess.run([self.memory.clear()])