-
Notifications
You must be signed in to change notification settings - Fork 516
/
Copy pathbenchmark.py
207 lines (159 loc) · 7.35 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
import os
import sys
import time
import datetime
import resource
import requests
import argparse
import threading
import socket
import torch
from lita.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from lita.conversation import conv_templates, SeparatorStyle
from lita.model.builder import load_pretrained_model
from lita.utils import disable_torch_init
from lita.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
from io import BytesIO
from transformers import TextIteratorStreamer
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="liuhaotian/lita-vicuna-v1-3-13b-finetune")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str, default=None)
parser.add_argument("--image-file", type=str, default="/data/images/hoover.jpg")
parser.add_argument("--prompt", action='append', nargs='*')
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=64)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument('--runs', type=int, default=2, help="Number of inferencing runs to do (for timing)")
parser.add_argument('--warmup', type=int, default=1, help='the number of warmup iterations')
parser.add_argument('--save', type=str, default='', help='CSV file to save benchmarking results to')
args = parser.parse_args()
if not args.prompt:
args.prompt = [
"What does the sign in the image say?",
"How far is the exit?",
"What kind of environment is it in?",
"Does it look like it's going to rain?",
]
print(args)
def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def get_max_rss(): # peak memory usage in MB (max RSS - https://stackoverflow.com/a/7669482)
return (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + resource.getrusage(resource.RUSAGE_CHILDREN).ru_maxrss) / 1024
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
if 'lita' in model_name.lower():
conv_mode = "lita"
elif 'llama-2' in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode
print(image_processor)
avg_encoder=0
avg_latency=0
avg_tokens_sec=0
for run in range(args.runs + args.warmup):
conv = conv_templates[args.conv_mode].copy()
if "mpt" in model_name.lower():
roles = ('user', 'assistant')
else:
roles = conv.roles
image = load_image(args.image_file)
time_begin=time.perf_counter()
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
time_encoder=time.perf_counter() - time_begin
print(f"{image_processor.feature_extractor_type} encoder: {time_encoder:.3f} seconds\n")
if run >= args.warmup:
avg_encoder += time_encoder
for inp in args.prompt:
print(f"{roles[0]}: ", inp)
print(f"{roles[1]}: ", end="")
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
#tokenizer_begin=time.perf_counter()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
#print(f"tokenizer: {time.perf_counter()-tokenizer_begin:.3f} seconds")
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
def generate():
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=args.max_new_tokens,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria]
)
thread = threading.Thread(target=generate)
thread.start()
new_tokens = ''
num_tokens = 0
time_begin = time.perf_counter()
for token in streamer:
print(token, end='')
sys.stdout.flush()
if num_tokens == 0:
time_first_token=time.perf_counter()
latency=time_first_token - time_begin
time_begin=time_first_token
new_tokens += token
num_tokens += 1
print('\n')
conv.messages[-1][-1] = new_tokens
#outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
#print(outputs)
#conv.messages[-1][-1] = outputs
time_elapsed=time.perf_counter() - time_begin
tokens_sec=(num_tokens-1) / time_elapsed
print(f"{model_name}: {num_tokens} tokens in {time_elapsed:.2f} sec, {tokens_sec:.2f} tokens/sec, latency {latency:.2f} sec\n")
if run >= args.warmup:
avg_latency += latency
avg_tokens_sec += tokens_sec
avg_encoder /= args.runs
avg_latency /= args.runs * len(args.prompt)
avg_tokens_sec /= args.runs * len(args.prompt)
memory_usage=get_max_rss()
print(f"AVERAGE of {args.runs} runs:")
print(f"{model_name}: encoder {avg_encoder:.3f} sec, {avg_tokens_sec:.2f} tokens/sec, latency {avg_latency:.2f} sec, memory {memory_usage:.2f} MB")
if args.save:
if not os.path.isfile(args.save): # csv header
with open(args.save, 'w') as file:
file.write(f"timestamp, hostname, api, model, encoder, tokens/sec, latency, memory\n")
with open(args.save, 'a') as file:
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, ")
file.write(f"llava, {model_name}, {avg_encoder}, {avg_tokens_sec}, {avg_latency}, {memory_usage}\n")