-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathstream.py
102 lines (85 loc) · 3.58 KB
/
stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python3
#
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the 'Software'),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import sys
import threading
import traceback
from model import Model
from jetson_utils import videoSource, videoOutput
class Stream(threading.Thread):
"""
Thread for streaming video and applying DNN inference
"""
def __init__(self, args):
"""
Create a stream from input/output video sources, along with DNN models.
"""
super().__init__()
self.args = args
self.input = videoSource(args.input, argv=sys.argv)
self.output = videoOutput(args.output, argv=sys.argv)
self.frames = 0
self.models = {}
# these are in the order that the overlays should be composited
model_types = {
'background' : args.background,
'segmentation' : args.segmentation,
'classification': args.classification,
'detection': args.detection,
'pose': args.pose,
'action': args.action
}
for key, model in model_types.items():
if model:
self.models[key] = Model(key, model=model, labels=args.labels, colors=args.colors, input_layer=args.input_layer, output_layer=args.output_layer)
if args.action and args.classification:
self.models['action'].fontLine = 1
def process(self):
"""
Capture one image from the stream, process it, and output it.
"""
img = self.input.Capture()
if img is None: # timeout
return
for model in self.models.values():
model.Process(img)
for model in self.models.values():
img = model.Visualize(img)
self.output.Render(img)
if self.frames % 25 == 0 or self.frames < 15:
print(f"captured {self.frames} frames from {self.args.input} => {self.args.output} ({img.width} x {img.height})")
self.frames += 1
def run(self):
"""
Run the stream processing thread's main loop.
"""
while True:
try:
self.process()
except:
traceback.print_exc()
@staticmethod
def usage():
"""
Return help text for when the app is started with -h or --help
"""
return videoSource.Usage() + videoOutput.Usage() + Model.Usage()