-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanager_32_find_slow_in_fast_tuning.py
57 lines (53 loc) · 2.58 KB
/
manager_32_find_slow_in_fast_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import sys
import glob
import shutil
import os
import pandas as pd
from pathlib import Path
from F_post_processsing import F100_analyze_hindcast_output
from A_config import a10_config
import tuner
import threading
import manager_0_user_params as upar
from manager_20_tune import monitor_condor_q
if __name__ == '__main__':
"""
Condor works with one job at at a time in scikit and has multiprocess disabled.
In this conidtions it is fast in general but may be slow with specific run that can run forever..
This script make a list of the slow process (thos that stay in run after some time) to be run locally
with more jobs and multithread. It makes a list and zip it with the spec file for local run.
On local computer, make sure that config, data, manager_0, are all equal to those on jeo.
"""
# USER PARAMS
metric = upar.metric # metric for best model selection, RMSE_val is the only one avail in fast_tuning
n = upar.n # ml models to rerun (obsrvation show that the best model found by standard tuning is within the first 10 found by fast tuning
config_fn = upar.config_fn
run_name = upar.run_name
# END OF USER PARAMS
config = a10_config.read(config_fn, run_name,
run_type='fast_tuning') # only to get where the fast tuning was stored
out_fast = config.models_out_dir
F100_analyze_hindcast_output.gather_output(config)
runIDs2rerun = F100_analyze_hindcast_output.compare_fast_outputs(config, n, metric2use=metric)
listSlow_bn = []
listSlow_fn = []
config = a10_config.read(config_fn, run_name, run_type='tuning')
# check who di not produced output
for id in runIDs2rerun:
myID = f'{id:06d}'
if len(glob.glob(os.path.join(config.models_out_dir, '*' + myID + '*'))) == 0:
bn = os.path.basename(glob.glob(os.path.join(config.models_spec_dir, '*' + myID + '*'))[0])
fn = glob.glob(os.path.join(config.models_spec_dir, '*' + myID + '*'))[0]
listSlow_bn.append(bn)
listSlow_fn.append(fn)
outDir = os.path.join(config.models_dir, 'listSlow')
Path(outDir).mkdir(parents=True, exist_ok=True)
for fn in listSlow_fn:
shutil.copy(fn, outDir)
# df = pd.DataFrame(listSlow_bn, columns=['listSlow'])
# df.to_csv(os.path.join(outDir, 'listSlow.csv'))
# zip all the dire and move it shared folder
jeo_share_root = '/mnt/cidstorage/cidportal/data/cid-bulk22/Shared/tmp/projectData/ML4CAST/'
output_filename = os.path.join(jeo_share_root, 'slowRuns')
shutil.make_archive(output_filename, 'zip', outDir)
print('Files copied')