Skip to content
This repository has been archived by the owner on Feb 15, 2024. It is now read-only.

Latest commit

 

History

History
227 lines (151 loc) · 5.54 KB

README.md

File metadata and controls

227 lines (151 loc) · 5.54 KB

Note

This project is moved to https://github.com/egorsmkv/asr-cc

ASR Corpus Creator

DOI

Overview

This app is intended to automatically create a corpus for ASR systems using pseudo-labeling.

Features

  • Send links of YouTube content or even an entire channel
  • Send direct links to video/audio from remote servers
  • Send local folders
  • Collect metadata
    • Loudness
    • Label language detection
    • Audio language detection
    • SRMR ratio (measure reverberation)
    • Audio type (Speech, Music, etc)
  • Export labeled data using a console
  • whisper, wav2vec2, or NeMo as an ASR backend

Installing

Requirements

  • Rust compiler
  • CMake
  • Protobuf compiler
  • Docker
  • wget
  • youtube-dl or yt-dlp
  • ffmpeg
  • Python >= 3.6

Clone the project

git clone https://github.com/egorsmkv/asr-corpus-creator
cd asr-corpus-creator

Installation

On MacOS

Install grpcio like the following:

pip install https://github.com/pietrodn/grpcio-mac-arm-build/releases/download/1.50.0/grpcio-1.50.0-cp310-cp310-macosx_11_0_arm64.whl

NOTE: Visit https://github.com/pietrodn/grpcio-mac-arm-build repository's releases to see different wheels for your Python version.

Install dependencies & activate virtual environment

# install pipenv if you do not use it already
pip install pipenv

# activate virtual environment
pipenv shell

# install Cython first
pip install Cython==0.29.32

# install dependencies
pipenv install

# or install dependencies with ability to see the installation process
pip install Django==4.1.3 django-bootstrap4==22.2 celery==5.2.7 redis==4.3.3 librosa==0.9.1 torch==1.13.0 torchaudio==0.13.0 pyzmq==23.1.0 transformers==4.20.1 loguru==0.6.0 psutil==5.9.1 pyctcdecode==0.3.0 'nemo-toolkit[asr]==1.12.0' git+https://github.com/openai/whisper.git lingua-language-detector==1.1.3 git+https://github.com/csteinmetz1/pyloudnorm

Apply migrations

python source/manage.py migrate

Create an account

python source/manage.py createsuperuser

Running

WebUI

python source/manage.py runserver

After starting the WebUI, open http://127.0.0.1:8000/ in your browser and log in with credentials you have created on the previous step.

Celery

Run Redis broker via docker:

docker run -d -p 6390:6379 redis

Run the worker (with youtube-dl):

cd source
HF_TOKEN=xxxx WGET_PATH=/opt/homebrew/bin/wget YOUTUBE_DL=/opt/homebrew/bin/youtube-dl FFMPEG_PATH=/Users/yehorsmoliakov/opt/miniconda3/bin/ffmpeg celery -A app worker -l INFO --concurrency 1

Run the worker (with yt-dlp):

cd source
HF_TOKEN=xxxx WGET_PATH=/opt/homebrew/bin/wget YT_DLP=/opt/homebrew/bin/yt-dlp FFMPEG_PATH=/Users/yehorsmoliakov/opt/miniconda3/bin/ffmpeg celery -A app worker -l INFO --concurrency 1

Run the worker with audio language detection:

cd source
HF_TOKEN=xxxx DETECT_AUDIO_LANG=yes WGET_PATH=/opt/homebrew/bin/wget YOUTUBE_DL=/opt/homebrew/bin/youtube-dl FFMPEG_PATH=/Users/yehorsmoliakov/opt/miniconda3/bin/ffmpeg celery -A app worker -l INFO --concurrency 1

You can set a higher value to the concurrency argument if you need the system to be more performant.

ZeroMQ server

Choose one server.

Whisper

WHISPER_LANG=en WHISPER_MODEL=base python zmq_server_whisper.py

wav2vec2

python zmq_server_w2v2.py

NeMo

python zmq_server_nemo.py
With a language model

Download unigrams.txt and lm.binary files.

Then, run as:

USE_LM=yes LM_UNIGRAMS_FILE=unigrams.txt LM_FILE=lm.binary NEMO_MODEL=theodotus/stt_uk_squeezeformer_ctc_ml python zmq_server_nemo.py

Push new files from a folder to the processing

Structure of the command:

python source/manage.py push_to_processing <collection_key> <lang> <folder_path>

Example:

python source/manage.py push_to_processing cv10 uk /Users/yehorsmoliakov/Downloads/test-folder

You can configure a CRON command to push new files with the above command.

Task monitoring

If you want to monitor running tasks, then install Flower:

pip install flower

and run it like the following:

cd source
nohup celery -A app flower -l INFO --concurrency 1 --port=5566 > /tmp/flower.log 2> /tmp/flower_errors.log < /dev/null &

then go to http://localhost:5566 to browse Flower.

Export the data

FILES_DIR=/Users/yehorsmoliakov/Work/asr-corpus-creator/source/content/media/audios/ python source/manage.py export_utterances_as_jsonl test_it2 > records.jsonl
  • test_it2 is the collection_key argument.

Classify utterances to get content audio type

python source/manage.py classify_utterances <collection_type> <device_id>

# for example:
python source/manage.py classify_utterances yt-split7 cpu
python source/manage.py classify_utterances yt-split7 cuda:0

Or to classify all utterances:

python source/manage.py classify_all_utterances <device_id>

# for example:
python source/manage.py classify_all_utterances cpu
python source/manage.py classify_all_utterances cuda:0

This command will classify utternaces using the AST model to get content type (Speech, Music, Bicycle bell, etc) from audio files.