-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyroFAE2.py
135 lines (110 loc) · 5.55 KB
/
pyroFAE2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import numpy as np
import merge_sort
from solution import Solution
import constants as Cnsts
class pyroFAE2:
def __init__(self) -> None:
os.system("rm ./data/robot/robot_fitness*.txt")
os.system("rm ./data/robot/brain*.nndf")
os.system("rm ./data/robot/body*.urdf")
self.parents = {}
self.next_available_id = 0
self.generation_size = Cnsts.generation_size
self.number_of_children = Cnsts.number_of_children
self.family_filter_size = Cnsts.family_filter_size
self.random_members = Cnsts.random_members
self.total_filter_size = self.generation_size - self.random_members
for parent_num in range(Cnsts.generation_size):
parent_id = "000" + f"{parent_num:03}" + f"{parent_num:03}" + "000"
self.parents[parent_id] = Solution(solution_id=parent_id)
self.next_available_id += 1
self.genome_shape = self.parents["000000000000"].network_shape
def evolve(self) -> None:
self.evaluate(self.parents)
for generation in range(Cnsts.num_generations):
os.system("rm ./data/robot/robot_fitness*.txt")
os.system("rm ./data/robot/brain*.nndf")
os.system("rm ./data/robot/body*.urdf")
self.evolve_for_one_generation(generation)
self.show_best()
def evaluate(self, solutions) -> None:
for key in solutions:
solution = solutions[key]
solution.start_simulation()
for key in solutions:
solution = solutions[key]
solution.wait_for_simulation_to_end()
def evolve_for_one_generation(self, generation):
self.produce_children(generation)
self.mutate()
self.evaluate(self.children)
self.print()
self.select(generation)
def produce_children(self, generation):
self.children = {}
for parent1 in self.parents:
for parent2 in self.parents:
for child_num in range(self.number_of_children):
percent_parent1 = np.random.rand(*self.genome_shape)
percent_parent2 = 1 - percent_parent1
parent1_genome = self.parents[parent1].weights
parent2_genome = self.parents[parent2].weights
child_id = f"{generation+1:03}" + parent1[3:6] + parent2[3:6] + f"{child_num:03}"
child_genome = np.multiply(percent_parent1, parent1_genome) + np.multiply(percent_parent2, parent2_genome)
self.children[child_id] = Solution(child_id, child_genome)
def mutate(self) -> None:
for child_key in self.children:
child = self.children[child_key]
child.mutate()
def print(self) -> None:
parent_fitnesses = []
for key in self.parents:
parent_fitnesses.append(self.parents[key].fitness)
child_fitnesses = []
for key in self.children:
child_fitnesses.append(self.children[key].fitness)
print("\np max: {} \t\t c max: {}".format(np.max(parent_fitnesses), np.max(child_fitnesses)))
print("p mean: {} \t\t c mean: {}\n".format(np.mean(parent_fitnesses), np.mean(child_fitnesses)))
def select(self, generation) -> None:
individuals = self.children | self.parents
sorted_individual_indices = self.sort_individuals(individuals)
next_generation = {}
family_counts = {}
while len(next_generation) < self.total_filter_size:
top_individual_index = sorted_individual_indices[0]
top_individual = individuals[top_individual_index]
top_individual_family1 = top_individual_index[3:6]
top_individual_family2 = top_individual_index[6:9]
if top_individual_family1 not in family_counts:
family_counts[top_individual_family1] = 0
if top_individual_family2 not in family_counts:
family_counts[top_individual_family2] = 0
if family_counts[top_individual_family1] > self.family_filter_size or family_counts[top_individual_family2] > self.family_filter_size:
sorted_individual_indices.remove(top_individual_index)
else:
family_counts[top_individual_family1] += 1
family_counts[top_individual_family2] += 1
next_generation[top_individual_index] = top_individual
sorted_individual_indices.remove(top_individual_index)
new_members = {}
for random_member_index in range(self.random_members):
new_individual_key = self.generation_size + (generation * self.random_members) + random_member_index
new_id = f"{generation:03}" + f"{new_individual_key:03}" + f"{new_individual_key:03}" + f"{random_member_index:03}"
new_members[new_id] = Solution(solution_id=new_id)
self.evaluate(new_members)
self.parents = next_generation | new_members
def show_best(self) -> None:
top_key = list(self.parents.keys())[0]
for key in self.parents:
parent = self.parents[key]
current_best = self.parents[top_key]
if parent.fitness > current_best.fitness:
top_key = key
print(self.parents[top_key].fitness)
self.parents[top_key].start_simulation("GUI")
def sort_individuals(self, individuals):
individual_fitness_dict = {}
for individual in individuals:
individual_fitness_dict[individual] = individuals[individual].fitness
return merge_sort.merge_sort(individual_fitness_dict)