forked from NVIDIA/nvbench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskip.cu
128 lines (117 loc) · 4.75 KB
/
skip.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* Copyright 2021 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 with the LLVM exception
* (the "License"); you may not use this file except in compliance with
* the License.
*
* You may obtain a copy of the License at
*
* http://llvm.org/foundation/relicensing/LICENSE.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvbench/nvbench.cuh>
// Grab some testing kernels from NVBench:
#include <nvbench/test_kernels.cuh>
// Thrust vectors simplify memory management:
#include <thrust/device_vector.h>
// std::enable_if_t
#include <type_traits>
//==============================================================================
// `runtime_skip` demonstrates how to skip benchmarks at runtime.
//
// Two parameter axes are swept (see axes.cu), but some configurations are
// skipped by calling `state.skip` with a skip reason string. This reason
// is printed to the log and captured in JSON output.
void runtime_skip(nvbench::state &state)
{
const auto duration = state.get_float64("Duration");
const auto kramble = state.get_string("Kramble");
// Skip Baz benchmarks with < 0.8 ms duration.
if (kramble == "Baz" && duration < 0.8e-3)
{
state.skip("Short 'Baz' benchmarks are skipped.");
return;
}
// Skip Foo benchmarks with > 0.3 ms duration.
if (kramble == "Foo" && duration > 0.3e-3)
{
state.skip("Long 'Foo' benchmarks are skipped.");
return;
}
// Run all others:
state.exec([duration](nvbench::launch &launch) {
nvbench::sleep_kernel<<<1, 1, 0, launch.get_stream()>>>(duration);
});
}
NVBENCH_BENCH(runtime_skip)
// 0, 0.25, 0.5, 0.75, and 1.0 milliseconds
.add_float64_axis("Duration",
nvbench::range(0.,
1.1e-3, // .1e-3 slop for fp precision
0.25e-3))
.add_string_axis("Kramble", {"Foo", "Bar", "Baz"});
//==============================================================================
// `skip_overload` demonstrates how to skip benchmarks at compile-time via
// overload resolution.
//
// Two type axes are swept, but configurations where InputType == OutputType are
// skipped.
template <typename InputType, typename OutputType>
void skip_overload(nvbench::state &state,
nvbench::type_list<InputType, OutputType>)
{
// This is a contrived example that focuses on the skip overloads, so this is
// just a sleep kernel:
state.exec([](nvbench::launch &launch) {
nvbench::sleep_kernel<<<1, 1, 0, launch.get_stream()>>>(1e-3);
});
}
// Overload of skip_overload that is called when InputType == OutputType.
template <typename T>
void skip_overload(nvbench::state &state, nvbench::type_list<T, T>)
{
state.skip("InputType == OutputType.");
}
// The same type_list is used for both inputs/outputs.
using sst_types = nvbench::type_list<nvbench::int32_t, nvbench::int64_t>;
// Setup benchmark:
NVBENCH_BENCH_TYPES(skip_overload, NVBENCH_TYPE_AXES(sst_types, sst_types))
.set_type_axes_names({"In", "Out"});
//==============================================================================
// `skip_sfinae` demonstrates how to skip benchmarks at compile-time using
// SFINAE to handle more complex skip conditions.
//
// Two type axes are swept, but configurations where sizeof(InputType) >
// sizeof(OutputType) are skipped.
// Enable this overload if InputType is not larger than OutputType
template <typename InputType, typename OutputType>
std::enable_if_t<(sizeof(InputType) <= sizeof(OutputType)), void>
skip_sfinae(nvbench::state &state, nvbench::type_list<InputType, OutputType>)
{
// This is a contrived example that focuses on the skip overloads, so this is
// just a sleep kernel:
state.exec([](nvbench::launch &launch) {
nvbench::sleep_kernel<<<1, 1, 0, launch.get_stream()>>>(1e-3);
});
}
// Enable this overload if InputType is larger than OutputType
template <typename InputType, typename OutputType>
std::enable_if_t<(sizeof(InputType) > sizeof(OutputType)), void>
skip_sfinae(nvbench::state &state, nvbench::type_list<InputType, OutputType>)
{
state.skip("sizeof(InputType) > sizeof(OutputType).");
}
// The same type_list is used for both inputs/outputs.
using sn_types = nvbench::type_list<nvbench::int8_t,
nvbench::int16_t,
nvbench::int32_t,
nvbench::int64_t>;
// Setup benchmark:
NVBENCH_BENCH_TYPES(skip_sfinae, NVBENCH_TYPE_AXES(sn_types, sn_types))
.set_type_axes_names({"In", "Out"});