-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
146 lines (113 loc) · 5.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
from sklearn.datasets import load_digits
from sklearn.datasets import fetch_mldata
from collections import OrderedDict
from GHSOM import GHSOM
from matplotlib import pyplot as plt
data_shape = 8
def __gmap_to_matrix(gmap):
gmap = gmap[0]
map_row = data_shape * gmap.shape[0]
map_col = data_shape * gmap.shape[1]
_image = np.empty(shape=(map_row, map_col), dtype=np.float32)
for i in range(0, map_row, data_shape):
for j in range(0, map_col, data_shape):
neuron = gmap[i // data_shape, j // data_shape]
_image[i:(i + data_shape), j:(j + data_shape)] = np.reshape(neuron, newshape=(data_shape, data_shape))
return _image
def __plot_child(e, gmap, level):
if e.inaxes is not None:
coords = (int(e.ydata // data_shape), int(e.xdata // data_shape))
neuron = gmap.neurons[coords]
if neuron.child_map is not None:
interactive_plot(neuron.child_map, num=str(coords), level=level+1)
def interactive_plot(gmap, num='root', level=1):
_num = "level {} -- parent pos {}".format(level, num)
fig, ax = plt.subplots(num=_num)
ax.imshow(__gmap_to_matrix(gmap.weights_map), cmap='bone_r', interpolation='sinc')
fig.canvas.mpl_connect('button_press_event', lambda event: __plot_child(event, gmap, level))
plt.axis('off')
fig.show()
def __plot_child_with_labels(e, gmap, level, data, labels, associations):
if e.inaxes is not None:
coords = (int(e.ydata // data_shape), int(e.xdata // data_shape))
neuron = gmap.neurons[coords]
if neuron.child_map is not None:
assc = associations[coords[0]][coords[1]]
interactive_plot_with_labels(neuron.child_map, dataset=data[assc], labels=labels[assc],
num=str(coords), level=level+1)
def interactive_plot_with_labels(gmap, dataset, labels, num='root', level=1):
colors = ["#E52B50", "#FFBF00", "#4B0082", "#FBCEB1", "#7FFFD4",
"#007FFF", "#00FF00", "#9966CC", "#CD7F32", "#89CFF0"]
sizes = np.arange(0, 60, 6) + 0.5
mapping = [[list() for _ in range(gmap.map_shape()[1])] for _ in range(gmap.map_shape()[0])]
_num = "level {} -- parent pos {}".format(level, num)
fig, ax = plt.subplots(num=_num)
ax.imshow(__gmap_to_matrix(gmap.weights_map), cmap='bone_r', interpolation='sinc')
fig.canvas.mpl_connect('button_press_event', lambda event: __plot_child_with_labels(event, gmap, level,
dataset, labels, mapping))
plt.axis('off')
for idx, label in enumerate(labels):
winner_neuron = gmap.winner_neuron(dataset[idx])[0][0]
r, c = winner_neuron.position
mapping[r][c].append(idx)
ax.plot(c*data_shape+data_shape/2, r*data_shape+data_shape/2, 'o', markerfacecolor='None',
markeredgecolor=colors[label], markersize=sizes[label], markeredgewidth=1.5, label=label)
legend_handles, legend_labels = plt.gca().get_legend_handles_labels()
by_label = OrderedDict(zip(legend_labels, legend_handles))
plt.legend(by_label.values(), by_label.keys(), loc='center left', bbox_to_anchor=(1.1, 0.5), borderaxespad=0.,
mode='expand', labelspacing=int((gmap.map_shape()[0]/9)*data_shape))
fig.show()
def mean_data_centroid_activation(ghsom, dataset):
distances = list()
for data in dataset:
_neuron = ghsom
while _neuron.child_map is not None:
_gsom = _neuron.child_map
_neuron = _gsom.winner_neuron(data)[0][0]
distances.append(_neuron.activation(data))
distances = np.asarray(a=distances, dtype=np.float32)
return distances.mean(), distances.std()
def __number_of_neurons(root):
r, c = root.child_map.weights_map[0].shape[0:2]
total_neurons = r * c
for neuron in root.child_map.neurons.values():
if neuron.child_map is not None:
total_neurons += __number_of_neurons(neuron)
return total_neurons
def dispersion_rate(ghsom, dataset):
used_neurons = dict()
for data in dataset:
gsom_reference = ''
neuron_reference = ''
_neuron = ghsom
while _neuron.child_map is not None:
_gsom = _neuron.child_map
_neuron = _gsom.winner_neuron(data)[0][0]
gsom_reference = str(_gsom)
neuron_reference = str(_neuron)
used_neurons["{}-{}-{}".format(gsom_reference, neuron_reference, _neuron.position)] = True
used_neurons = len(used_neurons)
return __number_of_neurons(ghsom) / used_neurons
if __name__ == '__main__':
digits = load_digits()
data = digits.data
n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target
# mnist = fetch_mldata('MNIST original')
# data = mnist.data
# n_samples, n_features = data.shape
# n_digits = len(np.unique(mnist.target))
# labels = mnist.target
print("dataset length: {}".format(n_samples))
print("features per example: {}".format(n_features))
print("number of digits: {}\n".format(n_digits))
ghsom = GHSOM(input_dataset=data, t1=0.1, t2=0.0001, learning_rate=0.15, decay=0.95, gaussian_sigma=1.5)
print("Training...")
zero_unit = ghsom.train(epochs_number=15, dataset_percentage=0.50, min_dataset_size=30, seed=0, grow_maxiter=10)
print(zero_unit)
print(mean_data_centroid_activation(zero_unit, data))
print(dispersion_rate(zero_unit, data))
interactive_plot_with_labels(zero_unit.child_map, data, labels)
plt.show()