forked from horovod/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-compose.test.yml
267 lines (260 loc) · 10.4 KB
/
docker-compose.test.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
version: '2.3'
services:
test-cpu-base:
build:
context: .
dockerfile: Dockerfile.test.cpu
args:
UBUNTU_VERSION: 20.04
GPP_VERSION: 7
MPI_KIND: None
PYTHON_VERSION: 3.8
TENSORFLOW_PACKAGE: tensorflow-cpu==2.9.1
KERAS_PACKAGE: keras==2.9.0
PYTORCH_PACKAGE: torch==1.11.0+cpu
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.12.0+cpu
MXNET_PACKAGE: mxnet==1.9.1
PYSPARK_PACKAGE: pyspark==3.2.1
SPARK_PACKAGE: spark-3.2.1/spark-3.2.1-bin-hadoop2.7.tgz
HOROVOD_BUILD_FLAGS: HOROVOD_WITH_GLOO=1
privileged: true
shm_size: 8gb
# our baseline first
test-cpu-gloo-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-cpu-base
# permute MPI kinds
test-cpu-mpich-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-cpu-base
build:
args:
MPI_KIND: MPICH
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-oneccl-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-cpu-base
build:
args:
MPI_KIND: ONECCL
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-openmpi-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-cpu-base
build:
args:
MPI_KIND: OpenMPI
HOROVOD_BUILD_FLAGS: HOROVOD_WITHOUT_GLOO=1
test-cpu-openmpi-gloo-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-cpu-base
build:
args:
MPI_KIND: OpenMPI
# run_gloo_integration expects tf1 to have Gloo mpi kind to run 'Elastic Spark * Tests'
# Tensorflow 1.15.5 is only available for Python 3.7
# Python 3.7 is only available on Ubuntu 18.04
# see test-gpu-gloo-py3_7-tf1_15_5-... below why we have to test with mxnet 1.5.1 here
test-cpu-gloo-py3_7-tf1_15_5-keras2_2_4-torch1_8_1-mxnet1_5_1_p0-pyspark3_2_1:
extends: test-cpu-base
build:
args:
# On Ubuntu 18.04 our setup.py will pull in a recent CMake and use that only to build Horovod
UBUNTU_VERSION: 18.04
PYTHON_VERSION: 3.7
# there is no tensorflow-cpu>1.15.0, so we use tensorflow==1.15.5
TENSORFLOW_PACKAGE: tensorflow==1.15.5
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.8.1+cpu
TORCHVISION_PACKAGE: torchvision==0.9.1+cpu
MXNET_PACKAGE: mxnet==1.5.1.post0
test-cpu-gloo-py3_8-tf2_7_3-keras2_7_0-torch1_9_1-mxnet1_7_0_p2-pyspark3_2_1:
extends: test-cpu-base
build:
args:
TENSORFLOW_PACKAGE: tensorflow-cpu==2.7.3
KERAS_PACKAGE: keras==2.7.0
PYTORCH_PACKAGE: torch==1.9.1+cpu
TORCHVISION_PACKAGE: torchvision==0.10.1+cpu
MXNET_PACKAGE: mxnet==1.7.0.post2
test-cpu-gloo-py3_8-tf2_8_2-keras2_8_0-torch1_10_2-mxnet1_8_0_p0-pyspark3_2_1:
extends: test-cpu-base
build:
args:
TENSORFLOW_PACKAGE: tensorflow-cpu==2.8.2
KERAS_PACKAGE: keras==2.8.0
PYTORCH_PACKAGE: torch==1.10.2+cpu
TORCHVISION_PACKAGE: torchvision==0.11.3+cpu
MXNET_PACKAGE: mxnet==1.8.0.post0
# then our baseline again, omitted ...
test-cpu-openmpi-gloo-py3_8-tfhead-keras_none-torchhead-mxnethead-pyspark3_2_1:
extends: test-cpu-base
build:
args:
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tf-nightly
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch-nightly
TORCHVISION_PACKAGE: torchvision
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
MXNET_PACKAGE: mxnet-nightly
# these are the lowest framework versions that Horovod compiles with, but they are not tested
test-cpu-openmpi-gloo-py3_7-tfmin-kerasmin-torchmin-mxnetmin-pysparkmin:
extends: test-cpu-base
build:
args:
UBUNTU_VERSION: 18.04
PYTHON_VERSION: 3.7
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tensorflow-cpu==1.15.0
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.5.0+cpu
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==0.7.3
TORCHVISION_PACKAGE: torchvision==0.6.0+cpu
MXNET_PACKAGE: mxnet==1.4.1
PYSPARK_PACKAGE: pyspark==2.4.0
SPARK_PACKAGE: spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz
test-cpu-gloo-py3_7-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark2_4_8:
extends: test-cpu-base
build:
args:
# Tensorflow 1.15.5 is only available for Python 3.7
# Python 3.7 is only available on Ubuntu 18.04
UBUNTU_VERSION: 18.04
PYTHON_VERSION: 3.7
PYSPARK_PACKAGE: pyspark==2.4.8
SPARK_PACKAGE: spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz
test-cpu-gloo-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_1_3:
extends: test-cpu-base
build:
args:
PYTHON_VERSION: 3.8
PYSPARK_PACKAGE: pyspark==3.1.3
SPARK_PACKAGE: spark-3.1.3/spark-3.1.3-bin-hadoop2.7.tgz
# then our baseline again, omitted ...
test-gpu-base:
build:
context: .
dockerfile: Dockerfile.test.gpu
args:
GPP_VERSION: 7
MPI_KIND: None
PYTHON_VERSION: 3.8
PYSPARK_PACKAGE: pyspark==3.2.1
SPARK_PACKAGE: spark-3.2.1/spark-3.2.1-bin-hadoop2.7.tgz
HOROVOD_BUILD_FLAGS: HOROVOD_GPU_OPERATIONS=NCCL
HOROVOD_MIXED_INSTALL: 0
runtime: nvidia
# We plumb CUDA_VISIBLE_DEVICES instead of NVIDIA_VISIBLE_DEVICES because
# the latter does not work in privileged mode that we use in the containers.
environment:
- CUDA_VISIBLE_DEVICES
privileged: true
shm_size: 8gb
# we need CUDA 10.0 as tensorflow-gpu==1.15.5 is compiled against and linked to CUDA 10.0
# mxnet-cu100==1.7.0 does not contain mkldnn headers, and there is no 1.7.0.postx that would have them
# there is no mxnet-1.6.0.post0 and mxnet-1.6.0 does not work with horovod
# https://github.com/apache/incubator-mxnet/issues/16193
# so we test with mxnet 1.5.1
test-gpu-gloo-py3_7-tf1_15_5-keras2_2_4-torch1_8_1-mxnet1_5_1_p0-pyspark3_2_1:
extends: test-gpu-base
build:
args:
# Tensorflow 1.15.5 is only available for Python 3.7
# Python 3.7 is only available on Ubuntu 18.04
CUDA_DOCKER_VERSION: 10.0-devel-ubuntu18.04
CUDNN_VERSION: 8.0.5.39-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda10.2
PYTHON_VERSION: 3.7
TENSORFLOW_PACKAGE: tensorflow-gpu==1.15.5
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.8.1+cu101
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.9.1+cu101
MXNET_PACKAGE: mxnet-cu100==1.5.1.post0
# here we deviate from mxnet==1.7.0.post2 as there is none for cu101, only post1
test-gpu-gloo-py3_8-tf2_7_3-keras2_7_0-torch1_9_1-mxnet1_7_0_p1-pyspark3_2_1:
extends: test-gpu-base
build:
args:
# CUDA 10.x devel image is only available with Ubuntu 18.04
CUDA_DOCKER_VERSION: 10.1-devel-ubuntu18.04
CUDNN_VERSION: 8.0.5.39-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda10.2
TENSORFLOW_PACKAGE: tensorflow-gpu==2.7.3
KERAS_PACKAGE: keras==2.7.0
PYTORCH_PACKAGE: torch==1.9.1+cu102
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.10.1+cu102
MXNET_PACKAGE: mxnet-cu101==1.7.0.post1
test-gpu-gloo-py3_8-tf2_8_2-keras2_8_0-torch1_10_2-mxnet1_8_0_p0-pyspark3_2_1:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu20.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
TENSORFLOW_PACKAGE: tensorflow-gpu==2.8.2
KERAS_PACKAGE: keras==2.8.0
PYTORCH_PACKAGE: torch==1.10.2+cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.11.3+cu111
MXNET_PACKAGE: mxnet-cu112==1.8.0.post0
test-gpu-openmpi-gloo-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu20.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tensorflow-gpu==2.9.1
KERAS_PACKAGE: keras==2.9.0
PYTORCH_PACKAGE: torch==1.11.0+cu113
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.12.0+cu113
MXNET_PACKAGE: mxnet-cu112==1.9.0
test-gpu-openmpi-gloo-py3_8-tfhead-keras_none-torchhead-mxnethead-pyspark3_2_1:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu20.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tf-nightly-gpu
KERAS_PACKAGE: None
PYTORCH_PACKAGE: torch-nightly-cu111
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision
MXNET_PACKAGE: mxnet-nightly-cu112
# these are the lowest framework versions that Horovod compiles with, but they are not tested
test-gpu-openmpi-gloo-py3_7-tfmin-kerasmin-torchmin-mxnetmin-pysparkmin:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 10.0-devel-ubuntu18.04
CUDNN_VERSION: 8.0.5.39-1+cuda10.1
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda10.2
MPI_KIND: OpenMPI
PYTHON_VERSION: 3.7
TENSORFLOW_PACKAGE: tensorflow-gpu==1.15.0
KERAS_PACKAGE: keras==2.2.4
PYTORCH_PACKAGE: torch==1.5.0+cu101
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==0.7.3
TORCHVISION_PACKAGE: torchvision==0.6.0+cu101
MXNET_PACKAGE: mxnet-cu100==1.4.1
PYSPARK_PACKAGE: pyspark==2.4.0
SPARK_PACKAGE: spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz
test-mixed-openmpi-gloo-py3_8-tf2_9_1-keras2_9_0-torch1_11_0-mxnet1_9_1-pyspark3_2_1:
extends: test-gpu-base
build:
args:
CUDA_DOCKER_VERSION: 11.2.2-devel-ubuntu20.04
CUDNN_VERSION: 8.1.1.33-1+cuda11.2
NCCL_VERSION_OVERRIDE: 2.8.4-1+cuda11.2
MPI_KIND: OpenMPI
TENSORFLOW_PACKAGE: tensorflow-gpu==2.9.1
KERAS_PACKAGE: keras==2.9.0
PYTORCH_PACKAGE: torch==1.11.0+cu113
PYTORCH_LIGHTNING_PACKAGE: pytorch-lightning==1.5.9
TORCHVISION_PACKAGE: torchvision==0.12.0+cu113
MXNET_PACKAGE: mxnet-cu112==1.9.0
HOROVOD_BUILD_FLAGS: ""
HOROVOD_MIXED_INSTALL: 1