-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathresults_full.yaml
156 lines (129 loc) · 4.77 KB
/
results_full.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# @package _global_
# Example call:
#
# python run.py +evaluation=results_full \
# evaluations_to_run.rebel.getter.path="$path_to_rebel_testing_output_jsonl" \
# evaluations_to_run.fewrel.getter.path="$path_to_fewrel_testing_output_jsonl" \
# evaluations_to_run.wikipedia_nre.getter.path="$path_to_wikipedia_nre_testing_output_jsonl" \
# evaluations_to_run.geo_nre.getter.path="$path_to_geo_nre_testing_output_jsonl" \
# run_name="results_genie_r"
defaults:
- override /logger:
- csv
- wandb
- override /trainer: null
- override /model: null
- override /datamodule: rebel # Use to select the reference training dataset for the bucket plot
- override /callbacks: null
- override /experiment: null
- override /hparams_search: null
- _self_
run_name: ??? # Will be used for logging
entity_trie_path: null
relation_trie_path: null
evaluations_to_run:
rebel:
getter:
_target_: genie.utils.evaluation.DefaultGetter
# Select the corresponding testing_output.json file
path: ???
evaluators:
micro:
_target_: genie.utils.evaluators.MicroMetricsEvaluator
num_bootstrap_samples: 50 # set to null in order not to perform bootstrap sampling
macro:
_target_: genie.utils.evaluators.MacroMetricsEvaluator
num_bootstrap_samples: 50
bucket:
_target_: genie.utils.evaluators.BucketEvaluator
num_bootstrap_samples: 50
bucket_plot_helper:
_target_: genie.utils.plot_helpers.BucketPlotHelper
# Use to adjust the range of the histogram on the bucket plot
bucket_plot_right_ylim_bottom: 0 # ex. 0 or null to keep the default ones
bucket_plot_right_ylim_top: 200 # ex. 200 or null to keep the default ones
model_name: "GenIE (REBEL)"
metrics:
precision:
_target_: genie.metrics.triplet_set_precision.TSPrecision
recall:
_target_: genie.metrics.triplet_set_recall.TSRecall
f1:
_target_: genie.metrics.triplet_set_f1.TSF1
fewrel:
getter:
_target_: genie.utils.evaluation.DefaultGetter
# Select the corresponding testing_output.json file
path: ???
evaluators:
micro:
_target_: genie.utils.evaluators.MicroMetricsEvaluator
num_bootstrap_samples: 50
macro:
_target_: genie.utils.evaluators.MacroMetricsEvaluator
num_bootstrap_samples: 50
# We only calculate recall on FewRel –
# we don't have the necessary information to calculate precision and by consequence the f1
metrics:
recall:
_target_: genie.metrics.triplet_set_recall.TSRecall
wikipedia_nre:
getter:
_target_: genie.utils.evaluation.DefaultGetter
# Select the corresponding testing_output.json file
path: ???
evaluators:
micro:
_target_: genie.utils.evaluators.MicroMetricsEvaluator
num_bootstrap_samples: 50
macro:
_target_: genie.utils.evaluators.MacroMetricsEvaluator
num_bootstrap_samples: 50
metrics:
precision:
_target_: genie.metrics.triplet_set_precision.TSPrecision
recall:
_target_: genie.metrics.triplet_set_recall.TSRecall
f1:
_target_: genie.metrics.triplet_set_f1.TSF1
geo_nre:
getter:
_target_: genie.utils.evaluation.DefaultGetter
# Select the corresponding testing_output.json file
path: ???
evaluators:
micro:
_target_: genie.utils.evaluators.MicroMetricsEvaluator
num_bootstrap_samples: 50
macro:
_target_: genie.utils.evaluators.MacroMetricsEvaluator
num_bootstrap_samples: 50
metrics:
precision:
_target_: genie.metrics.triplet_set_precision.TSPrecision
recall:
_target_: genie.metrics.triplet_set_recall.TSRecall
f1:
_target_: genie.metrics.triplet_set_f1.TSF1
###################################################################
################ IGNORE EVERYTHING AFTER THIS LINE ################
###################################################################
mode: "evaluate_from_file" # train, evaluate, evaluate_from_file
# path to original working directory
work_dir: ${hydra:runtime.cwd}
# path to folder with data
data_dir: ${work_dir}/data/
# use `python run.py debug=true` for easy debugging!
# this will run 1 train, val and test loop with only 1 batch
# equivalent to running `python run.py trainer.fast_dev_run=true`
# (this is placed here just for easier access from command line)
debug: null
debug_ckpt_path: null
# pretty print config at the start of the run using Rich library
print_config: True
# disable python warnings if they annoy you
ignore_warnings: False
# check performance on test set, using the best model achieved during training
# lightning chooses best model based on metric specified in checkpoint callback
test_after_training: null
seed: 123