-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathartosisnet_transforms.py
161 lines (137 loc) · 7.03 KB
/
artosisnet_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math
import numbers
import random
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from skimage.color import rgba2rgb
from skimage.metrics import structural_similarity as ssim
class SceneCropCallback():
def __init__(self, references, reference_bboxes, key):
self.references = [Image.open(reference) for reference in references]
self.reference_bboxes = reference_bboxes
assert len(self.references) == len(self.reference_bboxes)
for idx, ref in enumerate(self.references):
self.references[idx] = np.asarray(ref.resize((192, 108)))
# convert RGBA to RGB if needed
if self.references[idx].shape[-1] == 4:
self.references[idx] = rgba2rgb(self.references[idx])
self.key = key
def crop(self, img):
max_ssim = 0
bbox = None
resized = np.asarray(img.resize((192, 108)))
height = img.height
width = img.width
for idx, ref in enumerate(self.references):
cur_ssim = ssim(ref, resized, multichannel=True)
if cur_ssim > max_ssim:
max_ssim = cur_ssim
bbox = self.reference_bboxes[idx]
pil_bbox = [np.round(bbox[0]*width),
np.round(bbox[1]*height),
np.round(bbox[2]*width),
np.round(bbox[3]*height)]
return img.crop(bbox)
artosis_callback = SceneCropCallback(['reference_frames/artosis_bwmenu.jpg', 'reference_frames/artosis_ingame1_canonical.jpg', 'reference_frames/artosis_ingame2_canonical.png', 'reference_frames/bigscene1.png', 'reference_frames/mousekeyboard1.png', 'reference_frames/mousekeyboard2.png', 'reference_frames/unban1.png'],
[[0.3307291666666667, 0.6398148148148148, 0.6177083333333333, 1.0],
[0.7572916666666667, 0.12407407407407407, 0.9854166666666667, 0.4564814814814815],
[0.7833, 0.1296, 0.9682, 0.3694],
[0.29010416666666666, 0.4148148148148148, 0.6848958333333334, 1.0],
[0.7682291666666666, 0.5138888888888888, 0.5138888888888888, 1.0],
[0.7682291666666666, 0.5138888888888888, 0.5138888888888888, 1.0],
[0.475, 0.6138888888888889, 0.7130208333333333, 1.0]],
'artosis_callback')
crop_callbacks = dict()
crop_callbacks[artosis_callback.key] = artosis_callback
class RandomErasing2(transforms.RandomErasing):
"""Random Erasing with More Retries"""
@staticmethod
def get_params(img, scale, ratio, value=0):
"""Get parameters for ``erase`` for a random erasing.
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
scale: range of proportion of erased area against input image.
ratio: range of aspect ratio of erased area.
Returns:
tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
"""
img_c, img_h, img_w = img.shape
area = img_h * img_w
for _ in range(1000):
erase_area = random.uniform(scale[0], scale[1]) * area
aspect_ratio = random.uniform(ratio[0], ratio[1])
h = int(round(math.sqrt(erase_area * aspect_ratio)))
w = int(round(math.sqrt(erase_area / aspect_ratio)))
if h < img_h and w < img_w:
i = random.randint(0, img_h - h)
j = random.randint(0, img_w - w)
if isinstance(value, numbers.Number):
v = value
elif isinstance(value, torch._six.string_classes):
v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
elif isinstance(value, (list, tuple)):
v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
return i, j, h, w, v
# Return original image
return 0, 0, img_h, img_w, img
class PartialRandomResizedCrop(transforms.RandomResizedCrop):
"""Crop only the top segment(s) of a stacked image"""
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR, segments=2, erase_scale=(0.1, 1.0), erase_ratio=(0.001, 100.0), horizontalflip=False, segmenterase=True):
self.segments = segments
self.erase_scale = erase_scale
self.erase_ratio = erase_ratio
self.erase = RandomErasing2(p=1.0, scale=self.erase_scale, ratio=self.erase_ratio)
self.default_erase = transforms.RandomErasing()
self.totensor = transforms.ToTensor()
self.horizontalflip = None
if horizontalflip:
self.horizontalflip = transforms.RandomHorizontalFlip()
self.segmenterase = None
# lol spaghetti
if segmenterase:
self.segmenterase = self.default_erase
self.topil = transforms.ToPILImage()
self.colorjitter = transforms.ColorJitter(0.1, 0.1, 0.05)
super(PartialRandomResizedCrop, self).__init__(size, scale, ratio, interpolation)
def __call__(self, img):
width, height = img.size
assert height % width == 0
assert self.size[0] == width
square_dim = self.size[0]
img = img.copy()
for idx in range(0, self.segments):
assert (idx+1)*square_dim <= height
tempimg = img.crop((0, idx*square_dim, square_dim, (idx+1)*square_dim))
tempimgrandcrop = super(PartialRandomResizedCrop, self).__call__(tempimg)
#tempimgrandcrop = self.topil(self.default_erase(self.totensor(tempimgrandcrop)))
#tempimgrandcrop = self.colorjitter(tempimgrandcrop)
if self.horizontalflip:
tempimgrandcrop = self.horizontalflip(tempimgrandcrop)
if self.segmenterase:
tempimgrandcrop = self.topil(self.default_erase(self.totensor(tempimgrandcrop)))
img.paste(tempimgrandcrop, (0, idx*square_dim))
# if there is sound, apply randomerasing
if self.segments*square_dim < height:
tempimg = img.crop((0, self.segments*square_dim, square_dim, (self.segments+1)*square_dim))
tempimgranderase = self.topil(self.erase(self.totensor(tempimg)))
img.paste(tempimgranderase, (0, self.segments*square_dim))
return img
def __repr__(self):
fmt_str = super(PartialRandomResizedCrop, self).__repr__()
fmt_str += ', segments={0}'.format(self.segments)
return fmt_str
def main():
# quick test
pth = 'data_noconcat_331/train/1/youkiddingme_1187.jpg'
pth2 = 'data_noconcat_331/train/1/youkiddingme_1187.jpg'
tr = PartialRandomResizedCrop(331, scale=(0.1, 1.0), segments=1)
for i in range(0, 10):
img = Image.open(pth)
aug = tr(img)
aug.save('temptest{0:d}.jpg'.format(i))
img = Image.open(pth2)
aug = tr(img)
aug.save('temptest2{0:d}.jpg'.format(i))
if __name__ == '__main__':
main()