forked from tkschuler/MarsSHAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmars_radiation.py
199 lines (160 loc) · 5.71 KB
/
mars_radiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import math
import fluids
import numpy as np
import matplotlib.pyplot as plt
from math import cos, sin, pow, radians, degrees, fabs, exp, acos, asin
import config
#MARS RADIATION
class MarsRadiation:
e = 0.09341233 #Mars Eccentiricty
a = 1.524
Ls = radians(config.mars_properties['Ls'])
optical_depth = config.mars_properties['optical_depth']
emissGround = config.mars_properties['emissGround']
albedo = config.mars_properties['albedo']
P0 = 669.0 #Pressure @ Surface Level (Pa)
SB = 5.670373E-8 #Stefan_Boltzan Constant
RE = 3376000. # Radius of Mars (m)
emissEnv = config.balloon_properties['emissEnv']
absEnv = config.balloon_properties['absEnv']
#transEnv = .1
#refEnv = .1 #revlectivity of envelope
'''Presure and Temperature model as function of elevation from
https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html'''
def get_P(self,el):
"""Pressure at Elevation
:param el: Elevation (m)
:type el: float
:returns: Pressure (Pa)
:rtype: float
"""
try:
p = .699*exp(-.00009*el)*1000.
except:
p = 699.
return p #pascals
def get_g(self,el):
"""Gravity at Elevation
:param el: Elevation (m)
:type el: float
:returns: Accelertation (m/s^2)
:rtype: float
"""
#Proportional to radius
g= 3.711/pow(((MarsRadiation.RE+el)/MarsRadiation.RE),2)
return g
def get_T(self, el):
"""Temperature at Elevation
:param el: Elevation (m)
:type el: float
:returns: Temperature (K)
:rtype: float
"""
if el < 7000:
T = -31-.000998*el
else:
T = -23.4-.00222*el
T += T + 273.15 #convert to Kelvin
return T
def get_rho(self,el):
"""Density at Elevation
:param el: Elevation (m)
:type el: float
:returns: Density (kg/m^3)
:rtype: float
"""
T = self.get_T(el) - 273.5
P = self.get_P(el) / 2000
rho = P/(.1921*(T+273.1)) #kg/m^3
return rho
def get_Beam_I0(self,Ls):
'''
f = MarsRadiation.Ls-248 #degrees
r = MarsRadiation.a*(1-math.pow(MarsRadiation.e,2))/(1+MarsRadiation.e*math.cos(f))
S = 1371. # W/m^2 solar Constant
return S/math.pow(r,2)
'''
#G_ob
return 590*math.pow(1+MarsRadiation.e*cos(Ls-radians(248)),2)/pow((1-pow(MarsRadiation.e,2)),2)
def get_declination(self,Ls):
"""Expression from http://large.stanford.edu/courses/2017/ph240/black1/docs/nasa-tm-102299.pdf
:returns: Approximate solar declination (rad)
:rtype: float
"""
decl = asin(sin(radians(24.936))*sin(Ls))
return decl
def get_zenith(self,Ls,lat,h):
w = radians(15*h-180.)
decl = self.get_declination(Ls)
zen = acos(sin(lat)*sin(decl)+cos(lat)*cos(decl)*cos(w))
return zen
def get_air_mass(zen):
return 1/cos(zen)
'''
def get_optical_depth(self,Ls,lat):
print "asldkals", -1*pow(Ls-215,2)/730
print 0.779*exp(pow(-(Ls-215),2)/730.)#+exp(pow(-(Ls-295.),2)/730.)
return max([.5,16787.*(1+lat/150.)/(1917+pow((lat+38.27),2))])
'''
def get_surface_radiation(self,Ls, zen):
air_mass = 1/cos(zen)
return self.get_Beam_I0(Ls)*exp(-MarsRadiation.optical_depth*air_mass)
def get_global_irradiance(self,Ls,lat,h):
G_ob = self.get_Beam_I0(Ls)
G_ob = 590
zen = self.get_zenith(Ls,lat,h)
G_h = G_ob*cos(zen)*.8/0.9#MarsRadiation.optical_depth/0.9
if G_h < 0 :
G_h = 0
return G_h
def get_beam_irradiance(self,Ls,lat,h):
G_ob = 590
zen = self.get_zenith(Ls,lat,h)
G_bh = G_ob*cos(zen)*exp(-1*MarsRadiation.optical_depth/cos(zen))
if G_bh < 0:
G_bh = 0
return G_bh
def get_Mars_IR(self,el):
'''FIX THIS'''
T_surface = 225
p = self.get_P(el)
IR_trans = 1.716-0.5*(math.exp(-0.65*p/MarsRadiation.P0) + math.exp(-0.095*p/MarsRadiation.P0))
IR_tot = IR_trans*MarsRadiation.emissGround*MarsRadiation.SB*pow(T_surface,4)
return IR_tot
def get_albedo_flux(self,Ls,lat,h):
zen = self.get_zenith(Ls,lat,h)
I_sun = self.get_global_irradiance(Ls,lat,h)
albedo_flux = MarsRadiation.albedo*I_sun*sin(zen)
#print "albedo flux", albedo_flux
return albedo_flux
def get_rad_total(self,lat,Ls,el,t,d):
"""Total Radiation as a function of elevation, time of day, and balloon surface area
:param el: Elevation (m)
:type el: float
:returns: Total radiation (W/m^2)
:rtype: float
"""
h = t/3600.
projArea = 0.25*math.pi*d*d
surfArea = math.pi*d*d
try:
hca = math.asin(MarsRadiation.RE/(MarsRadiation.RE+el)) #half cone angle
except:
hca = math.asin(radians(1))
vf = 0.5*(1. - math.cos(hca)) #viewfactor
G_h = self.get_global_irradiance(Ls,lat,h)
power_direct = G_h*MarsRadiation.absEnv*projArea
'''
diffuse_I = self.get_diffuse_SI(zen, el)
power_diffuse = diffuse_I*totAbs*(1.-vf)*surfArea
'''
albedo_flux = self.get_albedo_flux(Ls,lat,h)
power_reflected = albedo_flux*MarsRadiation.absEnv*vf*surfArea
mars_IR = self.get_Mars_IR(el)
power_mars_IR = mars_IR*vf*surfArea*MarsRadiation.emissEnv #emissIR = absIR
'''
sky_IR = self.get_sky_IR(el)
power_sky_IR = sky_IR*totAbs*(1.-vf)*surfArea
'''
rad_tot = power_direct+power_mars_IR + power_mars_IR
return rad_tot