forked from tkschuler/MarsSHAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmars_sphere_balloon.py
304 lines (247 loc) · 9.28 KB
/
mars_sphere_balloon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import math
import fluids
import numpy as np
import matplotlib.pyplot as plt
import mars_radiation
from termcolor import colored
from math import radians
from scipy.integrate import odeint
from scipy import optimize
from math import pow, fabs
import config
class Mars_Sphere_Balloon:
Cp_co2 = config.mars_properties['Cp_co2']
Rsp_co2 = config.mars_properties['Rsp_co2']
cv_Co2 = config.mars_properties['Cv_co2']
cf = config.balloon_properties['cp']
RE = 3376000.0 # (m) Radius of Mars
SB = 5.670373E-8
def __init__(self):
self.d = config.balloon_properties['d']
self.emissEnv = config.balloon_properties['emissEnv']
self.surfArea = math.pi*self.d*self.d
self.massEnv = self.surfArea*.009 #density of material
self.vol = math.pi*4/3*pow((self.d/2),3)
def get_dynamic_viscocity_co2(self,T):
"""Returns Dynamic Viscocity of CO2 as function of Temperature
source: https://rotorcraft.arc.nasa.gov/Publications/files/koning_AIAA_2019.pdf
source: https://www.lmnoeng.com/Flow/GasViscosity.php
:param el: Temperaure (K)
:type el: float
:returns: Dynamic Viscocity ()
:rtype: float
"""
C = 240
To = 527.67
T = T*(9/5)
a = 0.555*To+C
b = 0.555*T + C
mu = 0.01480*(a/b)*math.pow((T/To),3/2)/1000
'''CONSTANT DUE TO LOW PRESSURE/TEMPERATURE'''
return 1.130E-5 #interpolated
def get_k_co2(self,T):
"""Returns Thermal Conductivity of CO2 as function of Temperature
source: https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-12-00158.1
:param el: Temperaure (K)
:type el: float
:returns: Thermal Conductivity ()
:rtype: float
"""
#k = 1.1691*11.9E-40E-7*pow(T,2)+1.3327*10E-5*T+2.2469*10E-3
#print "T", T
#k = 0.0241*math.pow((T/273.15),0.9)
#https://www.engineeringtoolbox.com/carbon-dioxide-thermal-conductivity-temperature-pressure-d_2019.html
'''CONSTANT DUE TO LOW PRESSURE/TEMPERATURE'''
k = 10.024/1000 #interpolated
return k
def get_Pr_co2(self,T):
"""Returns Prandtl Number of CO2 as function of Temperature
source: https://www.engineeringtoolbox.com/carbon-dioxide-prandtl-number-viscosity-heat-capacity-thermal-conductivity-d_2024.html
:param el: Temperaure (K)
:type el: float
:returns: Thermal Conductivity ()
:rtype: float
"""
'''CONSTANT DUE TO LOW PRESSURE/TEMPERATURE'''
Pr = 0.76 #interpolated
return Pr
'''------------------------SOLVE FOR SURFACE TEMPERATURE----------------------------------------'''
def get_Nu_ext(self,Ra, Re, Pr):
"""External Nusselt Number
:param Ra: Raleigh's number
:type Ra: float
:param Re: Reynold's number
:type Re: float
:param Pr: Prandtl Number
:type Pr: float
:returns: External Nusselt Number
:rtype: float
"""
Nu_n = 0.0
if Ra < 1.5E8:
try:
Nu_n = 2.0 + 0.6*pow(Ra,0.25)
except:
Nu_f = 2
else:
Nu_n = 0.1*pow(Ra, 0.34)
Nu_f = 0.0
if Re < 5E4:
#print colored(("Ra: ", Ra, "Re:", Re, "Pr: ", Pr), "red")
try:
Nu_f = 2 + 0.47*math.sqrt(Re)*pow(Pr, (1./3.))
except:
Nu_f = 2
else:
Nu_f = (0.0262*pow(Re, 0.8) - 615.)*pow(Pr, (1./3.));
return np.fmax(Nu_f, Nu_n);
def get_Nu_free(self,T,el,Pr):
m = mars_radiation.MarsRadiation()
T_atm = m.get_T(el)
p_atm = m.get_P(el)
rho_atm = m.get_rho(el)
g = m.get_g(el)
Pr_atm = self.get_Pr_co2(T_atm)
T_avg = 0.5*(T_atm + T)
rho_avg = p_atm/(Mars_Sphere_Balloon.Rsp_co2*T_avg)
Pr_avg = self.get_Pr_co2(T_avg)
exp_coeff = 1./T_avg
mu = self.get_dynamic_viscocity_co2(T_avg)
Gr = (pow(rho_atm,2)*g*fabs(T-T_atm)*pow(self.d,3))/(T_atm*pow(mu,2))
#print "Gr,", Gr, "Pr," , Pr
try:
Nu = 2 + .45*pow((Gr*Pr),.25)
except:
Nu = 2.45
return Nu
'''
# This was from the Bovine Paper, not using it.
def get_Nu_forced(self,Re, Ra, Pr):
Nu_n = 0.0
if Ra < 1.5E8:
Nu_n = 2.0 + 0.6*pow(Ra,0.25)
else:
Nu_n = 0.1*pow(Ra, 0.34)
Nu_f = 0.0
if Re < 5E4:
#print colored(("Ra: ", Ra, "Re:", Re, "Pr: ", Pr), "red")
try:
Nu_f = 2 + 0.47*math.sqrt(Re)*pow(Pr, (1./3.))
#print colored(Nu_f, "yellow")
except:
Nu_f = 2
#print colored("WTFFFFFFF why is there a math domain error", "yellow")
else:
Nu_f = (0.0262*pow(Re, 0.8) - 615.)*pow(Pr, (1./3.));
return np.fmax(Nu_f, Nu_n);
'''
def get_q_ext(self, T_s, el, v):
"""External Heat Transfer
:param zen: Surface Temperature of Envelope (K)
:type zen: float
:param el: Elevation (m)
:type el: float
:param el: velocity (m/s)
:type el: float
:returns: Power transferred from sphere to surrounding atmosphere due to convection(W)
:rtype: float
"""
m = mars_radiation.MarsRadiation()
T_atm = m.get_T(el)
p_atm = m.get_P(el)
rho_atm = m.get_rho(el)
g = m.get_g(el)
Pr_atm = self.get_Pr_co2(T_atm)
T_avg = 0.5*(T_atm + T_s)
rho_avg = p_atm/(Mars_Sphere_Balloon.Rsp_co2*T_avg)
Pr_avg = self.get_Pr_co2(T_avg)
exp_coeff = 1./T_avg
kin_visc = self.get_dynamic_viscocity_co2(T_avg)/rho_avg
k = self.get_k_co2(T_avg)
alpha = k/(rho_avg*Mars_Sphere_Balloon.Cp_co2)
Ra = g*exp_coeff*pow(self.d,3)/(kin_visc*alpha)*math.fabs(T_s-T_atm)
# Reynolds number has to be positive, therefore convert negative velocities.
Re = rho_atm*fabs(v)*self.d/self.get_dynamic_viscocity_co2(T_atm)
Nu = self.get_Nu_free(T_s,el,Pr_avg)
k = self.get_k_co2(T_avg)
'''External Free Convection'''
h = (Nu*k)/self.d
'''External Forced Convection'''
h_forced = k/self.d*(2+.41*np.power(Re,0.55))
#Take maximum value between free and forced
h = np.fmax(h,h_forced)
q_conv = h*self.surfArea*(T_s-T_atm)
return q_conv
'''------------------------SOLVE FOR T INT----------------------------------------------'''
def get_q_int(self,T_s, T_i, el):
m = mars_radiation.MarsRadiation()
T_atm = m.get_T(el)
p_atm = m.get_P(el)
rho_atm = m.get_rho(el)
g = m.get_g(el)
Pr = self.get_Pr_co2(T_i)
mu = self.get_dynamic_viscocity_co2(T_i)
k = self.get_k_co2(T_i)
h = 0.13*k*pow((pow(rho_atm,2)*g*fabs(T_s-T_i)*Pr)/(T_i*pow(mu,2)),(1/3))
q_int = h*self.surfArea*(T_s-T_i)
return q_int
def get_sum_q_surf(self,q_rad, T_s,T_i, el, v):
"""External Heat Transfer
:param q_rad: Power input from external radiation (W)
:type q_rad: float
:param T_s: Surface Temperature of Envelope (K)
:type T_s: float
:param el: Elevation (m)
:type el: float
:param v: velocity (m/s)
:type v: float
:returns: The sum of power input to the balloon surface (W)
:rtype: float
"""
# https://www.sciencedirect.com/science/article/pii/S0038092X15002418
# http://www.ae.utexas.edu/courses/ase261/balloon/BalloonTrajectory.pdf
q_ce = -self.get_q_ext(T_s, el, v) #Heat Loss due to External Convection
q_re = -self.emissEnv*Mars_Sphere_Balloon.SB*self.surfArea*(pow(T_s,4)) #Heat Loss due to radiation
q_ci = -self.get_q_int(T_s, T_i, el) #Heat Transfer due to Internal Convection
return q_rad + q_ce + q_re + q_ci
def solve_T_surf(self,q_rad, el, v):
def f(T_s):
return q_rad-self.emissEnv*Mars_Sphere_Balloon.SB*pow(T_s,4)*self.surfArea
T_s = optimize.newton(f, 400)
if T_s< 211.5:
T_s = 211.5
return T_s
'''
def get_Nu_int(self,Ra):
print "RA", Ra
try:
if Ra < 1.35E8:
return 2.5*(2+0.6*pow(Ra,0.25))
else:
return 0.325*pow(Ra, 0.333)
except:
print colored("negative exponent", "red")
return 0.0
def get_q_int(self,T_s, T_i, el):
m = mars_radiation.MarsRadiation()
T_atm = m.get_T(el)
p_atm = m.get_P(el)
rho_atm = m.get_rho(el)
g = m.get_g(el)
T_avg = 0.5*(T_s+T_i)
rho_avg = p_atm/(Mars_Sphere_Balloon.Rsp_co2*T_avg)
Pr = self.get_Pr_co2(T_avg)
exp_coeff = 1./T_avg
kin_visc = self.get_dynamic_viscocity_co2(T_avg)/rho_avg
Ra = self.get_Pr_co2(T_atm)*g*math.fabs(T_i-T_s)*pow(self.d,3)*exp_coeff/(kin_visc*kin_visc)
Nu = self.get_Nu_int(Ra)
k = self.get_k_co2(T_avg)
h = Nu*k/self.d
return h*self.surfArea*(T_i-T_s)
def get_sum_q_int(self, T_s, T_i, el):
q_ci = -self.get_q_int(T_s, T_i, el)
#should there even be IR transfer between internal air & balloon surf?
#i dont think so
#double q_ri = 0*E_int*SB_CONST*(pow(T_s,4)-pow(T_i,4))*surface_area;
return q_ci #// + q_ri;
'''