-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsjcl-mini.js
1542 lines (1367 loc) · 43.7 KB
/
sjcl-mini.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** @fileOverview Javascript cryptography implementation.
*
* Crush to remove comments, shorten variable names and
* generally reduce transmission size.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
"use strict";
/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
/*global document, window, escape, unescape, module, require, Uint32Array */
/**
* The Stanford Javascript Crypto Library, top-level namespace.
* @namespace
*/
var sjcl = {
/**
* Symmetric ciphers.
* @namespace
*/
cipher: {},
/**
* Hash functions. Right now only SHA256 is implemented.
* @namespace
*/
hash: {},
/**
* Key exchange functions. Right now only SRP is implemented.
* @namespace
*/
keyexchange: {},
/**
* Cipher modes of operation.
* @namespace
*/
mode: {},
/**
* Miscellaneous. HMAC and PBKDF2.
* @namespace
*/
misc: {},
/**
* Bit array encoders and decoders.
* @namespace
*
* @description
* The members of this namespace are functions which translate between
* SJCL's bitArrays and other objects (usually strings). Because it
* isn't always clear which direction is encoding and which is decoding,
* the method names are "fromBits" and "toBits".
*/
codec: {},
/**
* Exceptions.
* @namespace
*/
exception: {
/**
* Ciphertext is corrupt.
* @constructor
*/
corrupt: function(message) {
this.toString = function() { return "CORRUPT: "+this.message; };
this.message = message;
},
/**
* Invalid parameter.
* @constructor
*/
invalid: function(message) {
this.toString = function() { return "INVALID: "+this.message; };
this.message = message;
},
/**
* Bug or missing feature in SJCL.
* @constructor
*/
bug: function(message) {
this.toString = function() { return "BUG: "+this.message; };
this.message = message;
},
/**
* Something isn't ready.
* @constructor
*/
notReady: function(message) {
this.toString = function() { return "NOT READY: "+this.message; };
this.message = message;
}
}
};
/** @fileOverview Low-level AES implementation.
*
* This file contains a low-level implementation of AES, optimized for
* size and for efficiency on several browsers. It is based on
* OpenSSL's aes_core.c, a public-domain implementation by Vincent
* Rijmen, Antoon Bosselaers and Paulo Barreto.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Schedule out an AES key for both encryption and decryption. This
* is a low-level class. Use a cipher mode to do bulk encryption.
*
* @constructor
* @param {Array} key The key as an array of 4, 6 or 8 words.
*/
sjcl.cipher.aes = function (key) {
if (!this._tables[0][0][0]) {
this._precompute();
}
var i, j, tmp,
encKey, decKey,
sbox = this._tables[0][4], decTable = this._tables[1],
keyLen = key.length, rcon = 1;
if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
throw new sjcl.exception.invalid("invalid aes key size");
}
this._key = [encKey = key.slice(0), decKey = []];
// schedule encryption keys
for (i = keyLen; i < 4 * keyLen + 28; i++) {
tmp = encKey[i-1];
// apply sbox
if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
// shift rows and add rcon
if (i%keyLen === 0) {
tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
rcon = rcon<<1 ^ (rcon>>7)*283;
}
}
encKey[i] = encKey[i-keyLen] ^ tmp;
}
// schedule decryption keys
for (j = 0; i; j++, i--) {
tmp = encKey[j&3 ? i : i - 4];
if (i<=4 || j<4) {
decKey[j] = tmp;
} else {
decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
decTable[1][sbox[tmp>>16 & 255]] ^
decTable[2][sbox[tmp>>8 & 255]] ^
decTable[3][sbox[tmp & 255]];
}
}
};
sjcl.cipher.aes.prototype = {
// public
/* Something like this might appear here eventually
name: "AES",
blockSize: 4,
keySizes: [4,6,8],
*/
/**
* Encrypt an array of 4 big-endian words.
* @param {Array} data The plaintext.
* @return {Array} The ciphertext.
*/
encrypt:function (data) { return this._crypt(data,0); },
/**
* Decrypt an array of 4 big-endian words.
* @param {Array} data The ciphertext.
* @return {Array} The plaintext.
*/
decrypt:function (data) { return this._crypt(data,1); },
/**
* The expanded S-box and inverse S-box tables. These will be computed
* on the client so that we don't have to send them down the wire.
*
* There are two tables, _tables[0] is for encryption and
* _tables[1] is for decryption.
*
* The first 4 sub-tables are the expanded S-box with MixColumns. The
* last (_tables[01][4]) is the S-box itself.
*
* @private
*/
_tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
/**
* Expand the S-box tables.
*
* @private
*/
_precompute: function () {
var encTable = this._tables[0], decTable = this._tables[1],
sbox = encTable[4], sboxInv = decTable[4],
i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
// Compute double and third tables
for (i = 0; i < 256; i++) {
th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
}
for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
// Compute sbox
s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
s = s>>8 ^ s&255 ^ 99;
sbox[x] = s;
sboxInv[s] = x;
// Compute MixColumns
x8 = d[x4 = d[x2 = d[x]]];
tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
tEnc = d[s]*0x101 ^ s*0x1010100;
for (i = 0; i < 4; i++) {
encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
}
}
// Compactify. Considerable speedup on Firefox.
for (i = 0; i < 5; i++) {
encTable[i] = encTable[i].slice(0);
decTable[i] = decTable[i].slice(0);
}
},
/**
* Encryption and decryption core.
* @param {Array} input Four words to be encrypted or decrypted.
* @param dir The direction, 0 for encrypt and 1 for decrypt.
* @return {Array} The four encrypted or decrypted words.
* @private
*/
_crypt:function (input, dir) {
if (input.length !== 4) {
throw new sjcl.exception.invalid("invalid aes block size");
}
var key = this._key[dir],
// state variables a,b,c,d are loaded with pre-whitened data
a = input[0] ^ key[0],
b = input[dir ? 3 : 1] ^ key[1],
c = input[2] ^ key[2],
d = input[dir ? 1 : 3] ^ key[3],
a2, b2, c2,
nInnerRounds = key.length/4 - 2,
i,
kIndex = 4,
out = [0,0,0,0],
table = this._tables[dir],
// load up the tables
t0 = table[0],
t1 = table[1],
t2 = table[2],
t3 = table[3],
sbox = table[4];
// Inner rounds. Cribbed from OpenSSL.
for (i = 0; i < nInnerRounds; i++) {
a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
kIndex += 4;
a=a2; b=b2; c=c2;
}
// Last round.
for (i = 0; i < 4; i++) {
out[dir ? 3&-i : i] =
sbox[a>>>24 ]<<24 ^
sbox[b>>16 & 255]<<16 ^
sbox[c>>8 & 255]<<8 ^
sbox[d & 255] ^
key[kIndex++];
a2=a; a=b; b=c; c=d; d=a2;
}
return out;
}
};
/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Arrays of bits, encoded as arrays of Numbers.
* @namespace
* @description
* <p>
* These objects are the currency accepted by SJCL's crypto functions.
* </p>
*
* <p>
* Most of our crypto primitives operate on arrays of 4-byte words internally,
* but many of them can take arguments that are not a multiple of 4 bytes.
* This library encodes arrays of bits (whose size need not be a multiple of 8
* bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
* array of words, 32 bits at a time. Since the words are double-precision
* floating point numbers, they fit some extra data. We use this (in a private,
* possibly-changing manner) to encode the number of bits actually present
* in the last word of the array.
* </p>
*
* <p>
* Because bitwise ops clear this out-of-band data, these arrays can be passed
* to ciphers like AES which want arrays of words.
* </p>
*/
sjcl.bitArray = {
/**
* Array slices in units of bits.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
* slice until the end of the array.
* @return {bitArray} The requested slice.
*/
bitSlice: function (a, bstart, bend) {
a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
},
/**
* Extract a number packed into a bit array.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} blength The length of the number to extract.
* @return {Number} The requested slice.
*/
extract: function(a, bstart, blength) {
// FIXME: this Math.floor is not necessary at all, but for some reason
// seems to suppress a bug in the Chromium JIT.
var x, sh = Math.floor((-bstart-blength) & 31);
if ((bstart + blength - 1 ^ bstart) & -32) {
// it crosses a boundary
x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh);
} else {
// within a single word
x = a[bstart/32|0] >>> sh;
}
return x & ((1<<blength) - 1);
},
/**
* Concatenate two bit arrays.
* @param {bitArray} a1 The first array.
* @param {bitArray} a2 The second array.
* @return {bitArray} The concatenation of a1 and a2.
*/
concat: function (a1, a2) {
if (a1.length === 0 || a2.length === 0) {
return a1.concat(a2);
}
var last = a1[a1.length-1], shift = sjcl.bitArray.getPartial(last);
if (shift === 32) {
return a1.concat(a2);
} else {
return sjcl.bitArray._shiftRight(a2, shift, last|0, a1.slice(0,a1.length-1));
}
},
/**
* Find the length of an array of bits.
* @param {bitArray} a The array.
* @return {Number} The length of a, in bits.
*/
bitLength: function (a) {
var l = a.length, x;
if (l === 0) { return 0; }
x = a[l - 1];
return (l-1) * 32 + sjcl.bitArray.getPartial(x);
},
/**
* Truncate an array.
* @param {bitArray} a The array.
* @param {Number} len The length to truncate to, in bits.
* @return {bitArray} A new array, truncated to len bits.
*/
clamp: function (a, len) {
if (a.length * 32 < len) { return a; }
a = a.slice(0, Math.ceil(len / 32));
var l = a.length;
len = len & 31;
if (l > 0 && len) {
a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
}
return a;
},
/**
* Make a partial word for a bit array.
* @param {Number} len The number of bits in the word.
* @param {Number} x The bits.
* @param {Number} [_end=0] Pass 1 if x has already been shifted to the high side.
* @return {Number} The partial word.
*/
partial: function (len, x, _end) {
if (len === 32) { return x; }
return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
},
/**
* Get the number of bits used by a partial word.
* @param {Number} x The partial word.
* @return {Number} The number of bits used by the partial word.
*/
getPartial: function (x) {
return Math.round(x/0x10000000000) || 32;
},
/**
* Compare two arrays for equality in a predictable amount of time.
* @param {bitArray} a The first array.
* @param {bitArray} b The second array.
* @return {boolean} true if a == b; false otherwise.
*/
equal: function (a, b) {
if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
return false;
}
var x = 0, i;
for (i=0; i<a.length; i++) {
x |= a[i]^b[i];
}
return (x === 0);
},
/** Shift an array right.
* @param {bitArray} a The array to shift.
* @param {Number} shift The number of bits to shift.
* @param {Number} [carry=0] A byte to carry in
* @param {bitArray} [out=[]] An array to prepend to the output.
* @private
*/
_shiftRight: function (a, shift, carry, out) {
var i, last2=0, shift2;
if (out === undefined) { out = []; }
for (; shift >= 32; shift -= 32) {
out.push(carry);
carry = 0;
}
if (shift === 0) {
return out.concat(a);
}
for (i=0; i<a.length; i++) {
out.push(carry | a[i]>>>shift);
carry = a[i] << (32-shift);
}
last2 = a.length ? a[a.length-1] : 0;
shift2 = sjcl.bitArray.getPartial(last2);
out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
return out;
},
/** xor a block of 4 words together.
* @private
*/
_xor4: function(x,y) {
return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
},
/** byteswap a word array inplace.
* (does not handle partial words)
* @param {sjcl.bitArray} a word array
* @return {sjcl.bitArray} byteswapped array
*/
byteswapM: function(a) {
var i, v, m = 0xff00;
for (i = 0; i < a.length; ++i) {
v = a[i];
a[i] = (v >>> 24) | ((v >>> 8) & m) | ((v & m) << 8) | (v << 24);
}
return a;
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* UTF-8 strings
* @namespace
*/
sjcl.codec.utf8String = {
/** Convert from a bitArray to a UTF-8 string. */
fromBits: function (arr) {
var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out += String.fromCharCode(tmp >>> 8 >>> 8 >>> 8);
tmp <<= 8;
}
return decodeURIComponent(escape(out));
},
/** Convert from a UTF-8 string to a bitArray. */
toBits: function (str) {
str = unescape(encodeURIComponent(str));
var out = [], i, tmp=0;
for (i=0; i<str.length; i++) {
tmp = tmp << 8 | str.charCodeAt(i);
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Arrays of bytes
* @namespace
*/
sjcl.codec.bytes = {
/** Convert from a bitArray to an array of bytes. */
fromBits: function (arr) {
var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out.push(tmp >>> 24);
tmp <<= 8;
}
return out;
},
/** Convert from an array of bytes to a bitArray. */
toBits: function (bytes) {
var out = [], i, tmp=0;
for (i=0; i<bytes.length; i++) {
tmp = tmp << 8 | bytes[i];
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};
/** @fileOverview Javascript SHA-256 implementation.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* Special thanks to Aldo Cortesi for pointing out several bugs in
* this code.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Context for a SHA-256 operation in progress.
* @constructor
*/
sjcl.hash.sha256 = function (hash) {
if (!this._key[0]) { this._precompute(); }
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
sjcl.hash.sha256.hash = function (data) {
return (new sjcl.hash.sha256()).update(data).finalize();
};
sjcl.hash.sha256.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
if (nl > 9007199254740991){
throw new sjcl.exception.invalid("Cannot hash more than 2^53 - 1 bits");
}
if (typeof Uint32Array !== 'undefined') {
var c = new Uint32Array(b);
var j = 0;
for (i = 512+ol - ((512+ol) & 511); i <= nl; i+= 512) {
this._block(c.subarray(16 * j, 16 * (j+1)));
j += 1;
}
b.splice(0, 16 * j);
} else {
for (i = 512+ol - ((512+ol) & 511); i <= nl; i+= 512) {
this._block(b.splice(0,16));
}
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 8 big-endian words.
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-256 initialization vector, to be precomputed.
* @private
*/
_init:[],
/*
_init:[0x6a09e667,0xbb67ae85,0x3c6ef372,0xa54ff53a,0x510e527f,0x9b05688c,0x1f83d9ab,0x5be0cd19],
*/
/**
* The SHA-256 hash key, to be precomputed.
* @private
*/
_key:[],
/*
_key:
[0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],
*/
/**
* Function to precompute _init and _key.
* @private
*/
_precompute: function () {
var i = 0, prime = 2, factor, isPrime;
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
for (; i<64; prime++) {
isPrime = true;
for (factor=2; factor*factor <= prime; factor++) {
if (prime % factor === 0) {
isPrime = false;
break;
}
}
if (isPrime) {
if (i<8) {
this._init[i] = frac(Math.pow(prime, 1/2));
}
this._key[i] = frac(Math.pow(prime, 1/3));
i++;
}
}
},
/**
* Perform one cycle of SHA-256.
* @param {Uint32Array|bitArray} w one block of words.
* @private
*/
_block:function (w) {
var i, tmp, a, b,
h = this._h,
k = this._key,
h0 = h[0], h1 = h[1], h2 = h[2], h3 = h[3],
h4 = h[4], h5 = h[5], h6 = h[6], h7 = h[7];
/* Rationale for placement of |0 :
* If a value can overflow is original 32 bits by a factor of more than a few
* million (2^23 ish), there is a possibility that it might overflow the
* 53-bit mantissa and lose precision.
*
* To avoid this, we clamp back to 32 bits by |'ing with 0 on any value that
* propagates around the loop, and on the hash state h[]. I don't believe
* that the clamps on h4 and on h0 are strictly necessary, but it's close
* (for h4 anyway), and better safe than sorry.
*
* The clamps on h[] are necessary for the output to be correct even in the
* common case and for short inputs.
*/
for (i=0; i<64; i++) {
// load up the input word for this round
if (i<16) {
tmp = w[i];
} else {
a = w[(i+1 ) & 15];
b = w[(i+14) & 15];
tmp = w[i&15] = ((a>>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
(b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
w[i&15] + w[(i+9) & 15]) | 0;
}
tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
// shift register
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp | 0;
h3 = h2; h2 = h1; h1 = h0;
h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
}
h[0] = h[0]+h0 | 0;
h[1] = h[1]+h1 | 0;
h[2] = h[2]+h2 | 0;
h[3] = h[3]+h3 | 0;
h[4] = h[4]+h4 | 0;
h[5] = h[5]+h5 | 0;
h[6] = h[6]+h6 | 0;
h[7] = h[7]+h7 | 0;
}
};
/** @fileOverview Javascript SHA-1 implementation.
*
* Based on the implementation in RFC 3174, method 1, and on the SJCL
* SHA-256 implementation.
*
* @author Quinn Slack
*/
/**
* Context for a SHA-1 operation in progress.
* @constructor
*/
sjcl.hash.sha1 = function (hash) {
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 5 big-endian words.
*/
sjcl.hash.sha1.hash = function (data) {
return (new sjcl.hash.sha1()).update(data).finalize();
};
sjcl.hash.sha1.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
if (nl > 9007199254740991){
throw new sjcl.exception.invalid("Cannot hash more than 2^53 - 1 bits");
}
if (typeof Uint32Array !== 'undefined') {
var c = new Uint32Array(b);
var j = 0;
for (i = this.blockSize+ol - ((this.blockSize+ol) & (this.blockSize-1)); i <= nl;
i+= this.blockSize) {
this._block(c.subarray(16 * j, 16 * (j+1)));
j += 1;
}
b.splice(0, 16 * j);
} else {
for (i = this.blockSize+ol - ((this.blockSize+ol) & (this.blockSize-1)); i <= nl;
i+= this.blockSize) {
this._block(b.splice(0,16));
}
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 5 big-endian words. TODO
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-1 initialization vector.
* @private
*/
_init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0],
/**
* The SHA-1 hash key.
* @private
*/
_key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6],
/**
* The SHA-1 logical functions f(0), f(1), ..., f(79).
* @private
*/
_f:function(t, b, c, d) {
if (t <= 19) {
return (b & c) | (~b & d);
} else if (t <= 39) {
return b ^ c ^ d;
} else if (t <= 59) {
return (b & c) | (b & d) | (c & d);
} else if (t <= 79) {
return b ^ c ^ d;
}
},
/**
* Circular left-shift operator.
* @private
*/
_S:function(n, x) {
return (x << n) | (x >>> 32-n);
},
/**
* Perform one cycle of SHA-1.
* @param {Uint32Array|bitArray} words one block of words.
* @private
*/
_block:function (words) {
var t, tmp, a, b, c, d, e,
h = this._h;
var w;
if (typeof Uint32Array !== 'undefined') {
// When words is passed to _block, it has 16 elements. SHA1 _block
// function extends words with new elements (at the end there are 80 elements).
// The problem is that if we use Uint32Array instead of Array,
// the length of Uint32Array cannot be changed. Thus, we replace words with a
// normal Array here.
w = Array(80); // do not use Uint32Array here as the instantiation is slower
for (var j=0; j<16; j++){
w[j] = words[j];
}
} else {
w = words;
}
a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
for (t=0; t<=79; t++) {
if (t >= 16) {
w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]);
}
tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] +
this._key[Math.floor(t/20)]) | 0;