forked from adventuresinML/adventures-in-ml-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_net_py_torch.py
112 lines (93 loc) · 3.7 KB
/
conv_net_py_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets
from bokeh.plotting import figure
from bokeh.io import show
from bokeh.models import LinearAxis, Range1d
import numpy as np
# Hyperparameters
num_epochs = 6
num_classes = 10
batch_size = 100
learning_rate = 0.001
DATA_PATH = 'C:\\Users\Andy\PycharmProjects\MNISTData'
MODEL_STORE_PATH = 'C:\\Users\Andy\PycharmProjects\pytorch_models\\'
# transforms to apply to the data
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root=DATA_PATH, train=True, transform=trans, download=True)
test_dataset = torchvision.datasets.MNIST(root=DATA_PATH, train=False, transform=trans)
# Data loader
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.drop_out = nn.Dropout()
self.fc1 = nn.Linear(7 * 7 * 64, 1000)
self.fc2 = nn.Linear(1000, 10)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.drop_out(out)
out = self.fc1(out)
out = self.fc2(out)
return out
model = ConvNet()
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
loss_list = []
acc_list = []
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Run the forward pass
outputs = model(images)
loss = criterion(outputs, labels)
loss_list.append(loss.item())
# Backprop and perform Adam optimisation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Track the accuracy
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
acc_list.append(correct / total)
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item(),
(correct / total) * 100))
# Test the model
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format((correct / total) * 100))
# Save the model and plot
torch.save(model.state_dict(), MODEL_STORE_PATH + 'conv_net_model.ckpt')
p = figure(y_axis_label='Loss', width=850, y_range=(0, 1), title='PyTorch ConvNet results')
p.extra_y_ranges = {'Accuracy': Range1d(start=0, end=100)}
p.add_layout(LinearAxis(y_range_name='Accuracy', axis_label='Accuracy (%)'), 'right')
p.line(np.arange(len(loss_list)), loss_list)
p.line(np.arange(len(loss_list)), np.array(acc_list) * 100, y_range_name='Accuracy', color='red')
show(p)