forked from GeorgeCazenavette/glad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglad_utils.py
440 lines (352 loc) · 17.8 KB
/
glad_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import torch
import numpy as np
import copy
import utils
import wandb
import os
import torchvision
import gc
from tqdm import tqdm
from utils import get_network, config, evaluate_synset
def build_dataset(ds, class_map, num_classes):
images_all = []
labels_all = []
indices_class = [[] for c in range(num_classes)]
print("BUILDING DATASET")
for i in tqdm(range(len(ds))):
sample = ds[i]
images_all.append(torch.unsqueeze(sample[0], dim=0))
labels_all.append(class_map[torch.tensor(sample[1]).item()])
for i, lab in tqdm(enumerate(labels_all)):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to("cpu")
labels_all = torch.tensor(labels_all, dtype=torch.long, device="cpu")
return images_all, labels_all, indices_class
def prepare_latents(channel=3, num_classes=10, im_size=(32, 32), zdim=512, G=None, class_map_inv={}, get_images=None, args=None):
with torch.no_grad():
''' initialize the synthetic data '''
label_syn = torch.tensor([i*np.ones(args.ipc, dtype=np.int64) for i in range(num_classes)], dtype=torch.long, requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
if args.space == 'p':
latents = torch.randn(size=(num_classes * args.ipc, channel, im_size[0], im_size[1]), dtype=torch.float, requires_grad=False, device=args.device)
f_latents = None
else:
zs = torch.randn(num_classes * args.ipc, zdim, device=args.device, requires_grad=False)
if "imagenet" in args.dataset:
one_hot_dim = 1000
elif args.dataset == "CIFAR10":
one_hot_dim = 10
elif args.dataset == "CIFAR100":
one_hot_dim = 100
if args.avg_w:
G_labels = torch.zeros([label_syn.nelement(), one_hot_dim], device=args.device)
G_labels[
torch.arange(0, label_syn.nelement(), dtype=torch.long), [class_map_inv[x.item()] for x in
label_syn]] = 1
new_latents = []
for label in G_labels:
zs = torch.randn(1000, zdim).to(args.device)
ws = G.mapping(zs, torch.stack([label] * 1000))
w = torch.mean(ws, dim=0)
new_latents.append(w)
latents = torch.stack(new_latents)
del zs
for _ in new_latents:
del _
del new_latents
else:
G_labels = torch.zeros([label_syn.nelement(), one_hot_dim], device=args.device)
G_labels[
torch.arange(0, label_syn.nelement(), dtype=torch.long), [class_map_inv[x.item()] for x in
label_syn]] = 1
if args.distributed and False:
latents = G.mapping(zs.to("cuda:1"), G_labels.to("cuda:1")).to("cuda:0")
else:
latents = G.mapping(zs, G_labels)
del zs
del G_labels
ws = latents
if args.layer is not None:
f_latents = torch.cat(
[G.forward(split_ws, f_layer=args.layer, mode="to_f").detach() for split_ws in
torch.split(ws, args.sg_batch)])
f_type = f_latents.dtype
f_latents = f_latents.to(torch.float32).cpu()
f_latents = torch.nan_to_num(f_latents, posinf=5.0, neginf=-5.0)
f_latents = torch.clip(f_latents, min=-10, max=10)
f_latents = f_latents.to(f_type).cuda()
print(torch.mean(f_latents), torch.std(f_latents))
if args.rand_f:
f_latents = (torch.randn(f_latents.shape).to(args.device) * torch.std(
f_latents, dim=(1,2,3), keepdim=True) + torch.mean(f_latents, dim=(1,2,3), keepdim=True))
f_latents = f_latents.to(f_type)
print(torch.mean(f_latents), torch.std(f_latents))
f_latents.requires_grad_(True)
else:
f_latents = None
if args.pix_init == 'real' and args.space == "p":
print('initialize synthetic data from random real images')
for c in range(num_classes):
latents.data[c*args.ipc:(c+1)*args.ipc] = torch.cat([get_images(c, 1).detach().data for s in range(args.ipc)])
else:
print('initialize synthetic data from random noise')
latents = latents.detach().to(args.device).requires_grad_(True)
return latents, f_latents, label_syn
def get_optimizer_img(latents=None, f_latents=None, G=None, args=None):
if args.space == "wp" and (args.layer is not None and args.layer != -1):
optimizer_img = torch.optim.SGD([latents], lr=args.lr_w, momentum=0.5)
optimizer_img.add_param_group({'params': f_latents, 'lr': args.lr_img, 'momentum': 0.5})
else:
optimizer_img = torch.optim.SGD([latents], lr=args.lr_img, momentum=0.5)
if args.learn_g:
G.requires_grad_(True)
optimizer_img.add_param_group({'params': G.parameters(), 'lr': args.lr_g, 'momentum': 0.5})
optimizer_img.zero_grad()
return optimizer_img
def get_eval_lrs(args):
eval_pool_dict = {
args.model: 0.001,
"ResNet18": 0.001,
"VGG11": 0.0001,
"AlexNet": 0.001,
"ViT": 0.001,
"AlexNetCIFAR": 0.001,
"ResNet18CIFAR": 0.001,
"VGG11CIFAR": 0.0001,
"ViTCIFAR": 0.001,
}
return eval_pool_dict
def eval_loop(latents=None, f_latents=None, label_syn=None, G=None, best_acc={}, best_std={}, testloader=None, model_eval_pool=[], it=0, channel=3, num_classes=10, im_size=(32, 32), args=None):
curr_acc_dict = {}
max_acc_dict = {}
curr_std_dict = {}
max_std_dict = {}
eval_pool_dict = get_eval_lrs(args)
save_this_it = False
for model_eval in model_eval_pool:
if model_eval != args.model and args.wait_eval and it != args.Iteration:
continue
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s, iteration = %d' % (
args.model, model_eval, it))
accs_test = []
accs_train = []
for it_eval in range(args.num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size, width=args.width, depth=args.depth,
dist=False).to(args.device) # get a random model
eval_lats = latents
eval_labs = label_syn
image_syn = latents
image_syn_eval, label_syn_eval = copy.deepcopy(image_syn.detach()), copy.deepcopy(
eval_labs.detach()) # avoid any unaware modification
if args.space == "wp":
with torch.no_grad():
image_syn_eval = torch.cat(
[latent_to_im(G, (image_syn_eval_split, f_latents_split), args=args).detach() for
image_syn_eval_split, f_latents_split, label_syn_split in
zip(torch.split(image_syn_eval, args.sg_batch), torch.split(f_latents, args.sg_batch),
torch.split(label_syn, args.sg_batch))])
args.lr_net = eval_pool_dict[model_eval]
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader,
args=args, aug=True)
del _
del net_eval
accs_test.append(acc_test)
accs_train.append(acc_train)
print(accs_test)
accs_test = np.array(accs_test)
accs_train = np.array(accs_train)
acc_test_mean = np.mean(np.max(accs_test, axis=1))
acc_test_std = np.std(np.max(accs_test, axis=1))
best_dict_str = "{}".format(model_eval)
if acc_test_mean > best_acc[best_dict_str]:
best_acc[best_dict_str] = acc_test_mean
best_std[best_dict_str] = acc_test_std
save_this_it = True
curr_acc_dict[best_dict_str] = acc_test_mean
curr_std_dict[best_dict_str] = acc_test_std
max_acc_dict[best_dict_str] = best_acc[best_dict_str]
max_std_dict[best_dict_str] = best_std[best_dict_str]
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------' % (
len(accs_test[:, -1]), model_eval, acc_test_mean, np.std(np.max(accs_test, axis=1))))
wandb.log({'Accuracy/{}'.format(model_eval): acc_test_mean}, step=it)
wandb.log({'Max_Accuracy/{}'.format(model_eval): best_acc[best_dict_str]}, step=it)
wandb.log({'Std/{}'.format(model_eval): acc_test_std}, step=it)
wandb.log({'Max_Std/{}'.format(model_eval): best_std[best_dict_str]}, step=it)
wandb.log({
'Accuracy/Avg_All'.format(model_eval): np.mean(np.array(list(curr_acc_dict.values()))),
'Std/Avg_All'.format(model_eval): np.mean(np.array(list(curr_std_dict.values()))),
'Max_Accuracy/Avg_All'.format(model_eval): np.mean(np.array(list(max_acc_dict.values()))),
'Max_Std/Avg_All'.format(model_eval): np.mean(np.array(list(max_std_dict.values()))),
}, step=it)
curr_acc_dict.pop("{}".format(args.model))
curr_std_dict.pop("{}".format(args.model))
max_acc_dict.pop("{}".format(args.model))
max_std_dict.pop("{}".format(args.model))
wandb.log({
'Accuracy/Avg_Cross'.format(model_eval): np.mean(np.array(list(curr_acc_dict.values()))),
'Std/Avg_Cross'.format(model_eval): np.mean(np.array(list(curr_std_dict.values()))),
'Max_Accuracy/Avg_Cross'.format(model_eval): np.mean(np.array(list(max_acc_dict.values()))),
'Max_Std/Avg_Cross'.format(model_eval): np.mean(np.array(list(max_std_dict.values()))),
}, step=it)
return save_this_it
def load_sgxl(res, args=None):
import sys
import os
p = os.path.join("stylegan_xl")
if p not in sys.path:
sys.path.append(p)
import dnnlib
import legacy
from sg_forward import StyleGAN_Wrapper
device = torch.device('cuda')
if args.special_gan is not None:
if args.special_gan == "ffhq":
# network_pkl = "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/ffhq{}.pkl".format(res)
network_pkl = "../stylegan_xl/ffhq{}.pkl".format(res)
key = "G_ema"
elif args.special_gan == "pokemon":
# network_pkl = "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/pokemon{}.pkl".format(res)
network_pkl = "../stylegan_xl/pokemon{}.pkl".format(
res)
key = "G_ema"
elif "imagenet" in args.dataset:
if args.rand_gan_con:
network_pkl = "../stylegan_xl/random_conditional_{}.pkl".format(res)
key = "G"
elif args.rand_gan_un:
network_pkl = "../stylegan_xl/random_unconditional_{}.pkl".format(res)
key = "G"
else:
network_pkl = "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet{}.pkl".format(res)
key = "G_ema"
elif args.dataset == "CIFAR10":
if args.rand_gan_un:
network_pkl = "../stylegan_xl/random_unconditional_32.pkl"
key = "G"
else:
network_pkl = "https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/cifar10.pkl"
key = "G_ema"
elif args.dataset == "CIFAR100":
if args.rand_gan_con:
network_pkl = "../stylegan_xl/random_conditional_32.pkl"
key = "G"
elif args.rand_gan_un:
network_pkl = "../stylegan_xl/random_unconditional_32.pkl"
key = "G"
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)[key]
G = G.eval().requires_grad_(False).to(device)
z_dim = G.z_dim
w_dim = G.w_dim
num_ws = G.num_ws
G.eval()
mapping = G.mapping
G = StyleGAN_Wrapper(G)
gpu_num = torch.cuda.device_count()
if gpu_num > 1:
G = nn.DataParallel(G)
mapping = nn.DataParallel(mapping)
G.mapping = mapping
return G, z_dim, w_dim, num_ws
def latent_to_im(G, latents, args=None):
if args.space == "p":
return latents
mean, std = config.mean, config.std
if "imagenet" in args.dataset:
class_map = {i: x for i, x in enumerate(config.img_net_classes)}
if args.space == "p":
im = latents
elif args.space == "wp":
if args.layer is None or args.layer==-1:
im = G(latents[0], mode="wp")
else:
im = G(latents[0], latents[1], args.layer, mode="from_f")
im = (im + 1) / 2
im = (im - mean) / std
elif args.dataset == "CIFAR10" or args.dataset == "CIFAR100":
if args.space == "p":
im = latents
elif args.space == "wp":
if args.layer is None or args.layer == -1:
im = G(latents[0], mode="wp")
else:
im = G(latents[0], latents[1], args.layer, mode="from_f")
if args.distributed and False:
mean, std = config.mean_1, config.std_1
im = (im + 1) / 2
im = (im - mean) / std
return im
def image_logging(latents=None, f_latents=None, label_syn=None, G=None, it=None, save_this_it=None, args=None):
with torch.no_grad():
image_syn = latents.cuda()
if args.space == "wp":
with torch.no_grad():
if args.layer is None or args.layer == -1:
image_syn = latent_to_im(G, (image_syn.detach(), None), args=args)
else:
image_syn = torch.cat(
[latent_to_im(G, (image_syn_split.detach(), f_latents_split.detach()), args=args).detach() for
image_syn_split, f_latents_split, label_syn_split in
zip(torch.split(image_syn, args.sg_batch),
torch.split(f_latents, args.sg_batch),
torch.split(label_syn, args.sg_batch))])
save_dir = os.path.join(args.logdir, args.dataset, wandb.run.name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(image_syn.cpu(), os.path.join(save_dir, "images_{0:05d}.pt".format(it)))
torch.save(label_syn.cpu(), os.path.join(save_dir, "labels_{0:05d}.pt".format(it)))
if save_this_it:
torch.save(image_syn.cpu(), os.path.join(save_dir, "images_best.pt".format(it)))
torch.save(label_syn.cpu(), os.path.join(save_dir, "labels_best.pt".format(it)))
wandb.log({"Latent_Codes": wandb.Histogram(torch.nan_to_num(latents.detach().cpu()))}, step=it)
if args.ipc < 50 or args.force_save:
upsampled = image_syn
if "imagenet" not in args.dataset:
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Synthetic_Images": wandb.Image(torch.nan_to_num(grid.detach().cpu()))}, step=it)
wandb.log({'Synthetic_Pixels': wandb.Histogram(torch.nan_to_num(image_syn.detach().cpu()))}, step=it)
for clip_val in []:
upsampled = torch.clip(image_syn, min=-clip_val, max=clip_val)
if "imagenet" not in args.dataset:
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Clipped_Synthetic_Images/raw_{}".format(clip_val): wandb.Image(
torch.nan_to_num(grid.detach().cpu()))}, step=it)
for clip_val in [2.5]:
std = torch.std(image_syn)
mean = torch.mean(image_syn)
upsampled = torch.clip(image_syn, min=mean - clip_val * std, max=mean + clip_val * std)
if "imagenet" not in args.dataset:
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=2)
upsampled = torch.repeat_interleave(upsampled, repeats=4, dim=3)
grid = torchvision.utils.make_grid(upsampled, nrow=10, normalize=True, scale_each=True)
wandb.log({"Clipped_Synthetic_Images/std_{}".format(clip_val): wandb.Image(
torch.nan_to_num(grid.detach().cpu()))}, step=it)
del upsampled, grid
def gan_backward(latents=None, f_latents=None, image_syn=None, G=None, args=None):
f_latents.grad = None
latents_grad_list = []
f_latents_grad_list = []
for latents_split, f_latents_split, dLdx_split in zip(torch.split(latents, args.sg_batch),
torch.split(f_latents, args.sg_batch),
torch.split(image_syn.grad, args.sg_batch)):
latents_detached = latents_split.detach().clone().requires_grad_(True)
f_latents_detached = f_latents_split.detach().clone().requires_grad_(True)
syn_images = latent_to_im(G=G, latents=(latents_detached, f_latents_detached), args=args)
syn_images.backward((dLdx_split,))
latents_grad_list.append(latents_detached.grad)
f_latents_grad_list.append(f_latents_detached.grad)
del syn_images
del latents_split
del f_latents_split
del dLdx_split
del f_latents_detached
del latents_detached
gc.collect()
latents.grad = torch.cat(latents_grad_list)
del latents_grad_list
if args.layer != -1:
f_latents.grad = torch.cat(f_latents_grad_list)
del f_latents_grad_list