-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
57 lines (44 loc) · 2.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, graphemes_size, hidden_size):
super(Encoder, self).__init__()
self.graphemes_size = graphemes_size
self.hidden_size = hidden_size
self.emb = nn.Embedding(graphemes_size, hidden_size)
self.rnn = nn.GRU(hidden_size, hidden_size, bidirectional=True)
def forward(self, x):
# x: TxN
T, N = x.size()
emb = self.emb(x) # emb: TxNxH
output, _ = self.rnn(emb) # output: TxNxH, hidden: 1XNxH
output = output.view(T, N, 2, -1).sum(2) # reduce bi-RNN by sum
return output
class Decoder(nn.Module):
def __init__(self, phonemes_size, hidden_size):
super(Decoder, self).__init__()
self.phonemes_size = phonemes_size
self.hidden_size = hidden_size
self.emb = nn.Embedding(phonemes_size, hidden_size)
self.attn_combine = nn.Linear(2 * hidden_size, hidden_size)
self.rnn = nn.GRU(hidden_size, hidden_size)
self.fc = nn.Linear(hidden_size, phonemes_size, bias=False)
def forward(self, x, enc, hidden):
# x: 1xN, enc: T(enc)xNxH, hidden: 1xNxH
emb = self.emb(x) # emb: 1xNxH
shaped_hidden = hidden.squeeze(0).unsqueeze(2).contiguous()
shaped_act_hidden = torch.tanh(shaped_hidden)
shaped_enc = enc.transpose(0, 1).contiguous()
shaped_act_enc = torch.tanh(shaped_enc)
e = torch.bmm(shaped_act_enc, shaped_act_hidden) # NxT(enc)x1
att_weights = torch.softmax(e, 1).squeeze(2).unsqueeze(1)
att_vec = torch.bmm(att_weights, shaped_enc)
att_vec = att_vec.transpose(1, 0).contiguous()
x = torch.cat([att_vec, emb], dim=2)
x = self.attn_combine(x)
output, hidden = self.rnn(x, hidden) # output: 1xNxH, hidden: 1XNxH
T, N, H = output.size()
output = output.view(T * N, H)
output = self.fc(output)
output = output.view(T, N, self.phonemes_size)
return output, hidden, att_weights