-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathfinetune_ldm_decoder.py
365 lines (309 loc) · 17 KB
/
finetune_ldm_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import sys
from copy import deepcopy
from omegaconf import OmegaConf
from pathlib import Path
from typing import Callable, Iterable
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
import utils
import utils_img
import utils_model
sys.path.append('src')
from ldm.models.autoencoder import AutoencoderKL
from ldm.models.diffusion.ddpm import LatentDiffusion
from loss.loss_provider import LossProvider
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def get_parser():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('Data parameters')
aa("--train_dir", type=str, help="Path to the training data directory", required=True)
aa("--val_dir", type=str, help="Path to the validation data directory", required=True)
group = parser.add_argument_group('Model parameters')
aa("--ldm_config", type=str, default="sd/stable-diffusion-v-1-4-original/v1-inference.yaml", help="Path to the configuration file for the LDM model")
aa("--ldm_ckpt", type=str, default="sd/stable-diffusion-v-1-4-original/sd-v1-4-full-ema.ckpt", help="Path to the checkpoint file for the LDM model")
aa("--msg_decoder_path", type=str, default= "models/hidden/dec_48b_whit.torchscript.pt", help="Path to the hidden decoder for the watermarking model")
aa("--num_bits", type=int, default=48, help="Number of bits in the watermark")
aa("--redundancy", type=int, default=1, help="Number of times the watermark is repeated to increase robustness")
aa("--decoder_depth", type=int, default=8, help="Depth of the decoder in the watermarking model")
aa("--decoder_channels", type=int, default=64, help="Number of channels in the decoder of the watermarking model")
group = parser.add_argument_group('Training parameters')
aa("--batch_size", type=int, default=4, help="Batch size for training")
aa("--img_size", type=int, default=256, help="Resize images to this size")
aa("--loss_i", type=str, default="watson-vgg", help="Type of loss for the image loss. Can be watson-vgg, mse, watson-dft, etc.")
aa("--loss_w", type=str, default="bce", help="Type of loss for the watermark loss. Can be mse or bce")
aa("--lambda_i", type=float, default=0.2, help="Weight of the image loss in the total loss")
aa("--lambda_w", type=float, default=1.0, help="Weight of the watermark loss in the total loss")
aa("--optimizer", type=str, default="AdamW,lr=5e-4", help="Optimizer and learning rate for training")
aa("--steps", type=int, default=100, help="Number of steps to train the model for")
aa("--warmup_steps", type=int, default=20, help="Number of warmup steps for the optimizer")
group = parser.add_argument_group('Logging and saving freq. parameters')
aa("--log_freq", type=int, default=10, help="Logging frequency (in steps)")
aa("--save_img_freq", type=int, default=1000, help="Frequency of saving generated images (in steps)")
group = parser.add_argument_group('Experiments parameters')
aa("--num_keys", type=int, default=1, help="Number of fine-tuned checkpoints to generate")
aa("--output_dir", type=str, default="output/", help="Output directory for logs and images (Default: /output)")
aa("--seed", type=int, default=0)
aa("--debug", type=utils.bool_inst, default=False, help="Debug mode")
return parser
def main(params):
# Set seeds for reproductibility
torch.manual_seed(params.seed)
torch.cuda.manual_seed_all(params.seed)
np.random.seed(params.seed)
# Print the arguments
print("__git__:{}".format(utils.get_sha()))
print("__log__:{}".format(json.dumps(vars(params))))
# Create the directories
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir)
imgs_dir = os.path.join(params.output_dir, 'imgs')
params.imgs_dir = imgs_dir
if not os.path.exists(imgs_dir):
os.makedirs(imgs_dir, exist_ok=True)
# Loads LDM auto-encoder models
print(f'>>> Building LDM model with config {params.ldm_config} and weights from {params.ldm_ckpt}...')
config = OmegaConf.load(f"{params.ldm_config}")
ldm_ae: LatentDiffusion = utils_model.load_model_from_config(config, params.ldm_ckpt)
ldm_ae: AutoencoderKL = ldm_ae.first_stage_model
ldm_ae.eval()
ldm_ae.to(device)
# Loads hidden decoder
print(f'>>> Building hidden decoder with weights from {params.msg_decoder_path}...')
if 'torchscript' in params.msg_decoder_path:
msg_decoder = torch.jit.load(params.msg_decoder_path).to(device)
# already whitened
else:
msg_decoder = utils_model.get_hidden_decoder(num_bits=params.num_bits, redundancy=params.redundancy, num_blocks=params.decoder_depth, channels=params.decoder_channels).to(device)
ckpt = utils_model.get_hidden_decoder_ckpt(params.msg_decoder_path)
print(msg_decoder.load_state_dict(ckpt, strict=False))
msg_decoder.eval()
# whitening
print(f'>>> Whitening...')
with torch.no_grad():
# features from the dataset
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
loader = utils.get_dataloader(params.train_dir, transform, batch_size=16, collate_fn=None)
ys = []
for i, x in enumerate(loader):
x = x.to(device)
y = msg_decoder(x)
ys.append(y.to('cpu'))
ys = torch.cat(ys, dim=0)
nbit = ys.shape[1]
# whitening
mean = ys.mean(dim=0, keepdim=True) # NxD -> 1xD
ys_centered = ys - mean # NxD
cov = ys_centered.T @ ys_centered
e, v = torch.linalg.eigh(cov)
L = torch.diag(1.0 / torch.pow(e, exponent=0.5))
weight = torch.mm(L, v.T)
bias = -torch.mm(mean, weight.T).squeeze(0)
linear = nn.Linear(nbit, nbit, bias=True)
linear.weight.data = np.sqrt(nbit) * weight
linear.bias.data = np.sqrt(nbit) * bias
msg_decoder = nn.Sequential(msg_decoder, linear.to(device))
torchscript_m = torch.jit.script(msg_decoder)
params.msg_decoder_path = params.msg_decoder_path.replace(".pth", "_whit.pth")
print(f'>>> Creating torchscript at {params.msg_decoder_path}...')
torch.jit.save(torchscript_m, params.msg_decoder_path)
msg_decoder.eval()
nbit = msg_decoder(torch.zeros(1, 3, 128, 128).to(device)).shape[-1]
# Freeze LDM and hidden decoder
for param in [*msg_decoder.parameters(), *ldm_ae.parameters()]:
param.requires_grad = False
# Loads the data
print(f'>>> Loading data from {params.train_dir} and {params.val_dir}...')
vqgan_transform = transforms.Compose([
transforms.Resize(params.img_size),
transforms.CenterCrop(params.img_size),
transforms.ToTensor(),
utils_img.normalize_vqgan,
])
train_loader = utils.get_dataloader(params.train_dir, vqgan_transform, params.batch_size, num_imgs=params.batch_size*params.steps, shuffle=True, num_workers=4, collate_fn=None)
val_loader = utils.get_dataloader(params.val_dir, vqgan_transform, params.batch_size*4, num_imgs=1000, shuffle=False, num_workers=4, collate_fn=None)
vqgan_to_imnet = transforms.Compose([utils_img.unnormalize_vqgan, utils_img.normalize_img])
# Create losses
print(f'>>> Creating losses...')
print(f'Losses: {params.loss_w} and {params.loss_i}...')
if params.loss_w == 'mse':
loss_w = lambda decoded, keys, temp=10.0: torch.mean((decoded*temp - (2*keys-1))**2) # b k - b k
elif params.loss_w == 'bce':
loss_w = lambda decoded, keys, temp=10.0: F.binary_cross_entropy_with_logits(decoded*temp, keys, reduction='mean')
else:
raise NotImplementedError
if params.loss_i == 'mse':
loss_i = lambda imgs_w, imgs: torch.mean((imgs_w - imgs)**2)
elif params.loss_i == 'watson-dft':
provider = LossProvider()
loss_percep = provider.get_loss_function('Watson-DFT', colorspace='RGB', pretrained=True, reduction='sum')
loss_percep = loss_percep.to(device)
loss_i = lambda imgs_w, imgs: loss_percep((1+imgs_w)/2.0, (1+imgs)/2.0)/ imgs_w.shape[0]
elif params.loss_i == 'watson-vgg':
provider = LossProvider()
loss_percep = provider.get_loss_function('Watson-VGG', colorspace='RGB', pretrained=True, reduction='sum')
loss_percep = loss_percep.to(device)
loss_i = lambda imgs_w, imgs: loss_percep((1+imgs_w)/2.0, (1+imgs)/2.0)/ imgs_w.shape[0]
elif params.loss_i == 'ssim':
provider = LossProvider()
loss_percep = provider.get_loss_function('SSIM', colorspace='RGB', pretrained=True, reduction='sum')
loss_percep = loss_percep.to(device)
loss_i = lambda imgs_w, imgs: loss_percep((1+imgs_w)/2.0, (1+imgs)/2.0)/ imgs_w.shape[0]
else:
raise NotImplementedError
for ii_key in range(params.num_keys):
# Creating key
print(f'\n>>> Creating key with {nbit} bits...')
key = torch.randint(0, 2, (1, nbit), dtype=torch.float32, device=device)
key_str = "".join([ str(int(ii)) for ii in key.tolist()[0]])
print(f'Key: {key_str}')
# Copy the LDM decoder and finetune the copy
ldm_decoder = deepcopy(ldm_ae)
ldm_decoder.encoder = nn.Identity()
ldm_decoder.quant_conv = nn.Identity()
ldm_decoder.to(device)
for param in ldm_decoder.parameters():
param.requires_grad = True
optim_params = utils.parse_params(params.optimizer)
optimizer = utils.build_optimizer(model_params=ldm_decoder.parameters(), **optim_params)
# Training loop
print(f'>>> Training...')
train_stats = train(train_loader, optimizer, loss_w, loss_i, ldm_ae, ldm_decoder, msg_decoder, vqgan_to_imnet, key, params)
val_stats = val(val_loader, ldm_ae, ldm_decoder, msg_decoder, vqgan_to_imnet, key, params)
log_stats = {'key': key_str,
**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in val_stats.items()},
}
save_dict = {
'ldm_decoder': ldm_decoder.state_dict(),
'optimizer': optimizer.state_dict(),
'params': params,
}
# Save checkpoint
torch.save(save_dict, os.path.join(params.output_dir, f"checkpoint_{ii_key:03d}.pth"))
with (Path(params.output_dir) / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
with (Path(params.output_dir) / "keys.txt").open("a") as f:
f.write(os.path.join(params.output_dir, f"checkpoint_{ii_key:03d}.pth") + "\t" + key_str + "\n")
print('\n')
def train(data_loader: Iterable, optimizer: torch.optim.Optimizer, loss_w: Callable, loss_i: Callable, ldm_ae: AutoencoderKL, ldm_decoder:AutoencoderKL, msg_decoder: nn.Module, vqgan_to_imnet:nn.Module, key: torch.Tensor, params: argparse.Namespace):
header = 'Train'
metric_logger = utils.MetricLogger(delimiter=" ")
ldm_decoder.decoder.train()
base_lr = optimizer.param_groups[0]["lr"]
for ii, imgs in enumerate(metric_logger.log_every(data_loader, params.log_freq, header)):
imgs = imgs.to(device)
keys = key.repeat(imgs.shape[0], 1)
utils.adjust_learning_rate(optimizer, ii, params.steps, params.warmup_steps, base_lr)
# encode images
imgs_z = ldm_ae.encode(imgs) # b c h w -> b z h/f w/f
imgs_z = imgs_z.mode()
# decode latents with original and finetuned decoder
imgs_d0 = ldm_ae.decode(imgs_z) # b z h/f w/f -> b c h w
imgs_w = ldm_decoder.decode(imgs_z) # b z h/f w/f -> b c h w
# extract watermark
decoded = msg_decoder(vqgan_to_imnet(imgs_w)) # b c h w -> b k
# compute loss
lossw = loss_w(decoded, keys)
lossi = loss_i(imgs_w, imgs_d0)
loss = params.lambda_w * lossw + params.lambda_i * lossi
# optim step
loss.backward()
optimizer.step()
optimizer.zero_grad()
# log stats
diff = (~torch.logical_xor(decoded>0, keys>0)) # b k -> b k
bit_accs = torch.sum(diff, dim=-1) / diff.shape[-1] # b k -> b
word_accs = (bit_accs == 1) # b
log_stats = {
"iteration": ii,
"loss": loss.item(),
"loss_w": lossw.item(),
"loss_i": lossi.item(),
"psnr": utils_img.psnr(imgs_w, imgs_d0).mean().item(),
# "psnr_ori": utils_img.psnr(imgs_w, imgs).mean().item(),
"bit_acc_avg": torch.mean(bit_accs).item(),
"word_acc_avg": torch.mean(word_accs.type(torch.float)).item(),
"lr": optimizer.param_groups[0]["lr"],
}
for name, loss in log_stats.items():
metric_logger.update(**{name:loss})
if ii % params.log_freq == 0:
print(json.dumps(log_stats))
# save images during training
if ii % params.save_img_freq == 0:
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs),0,1), os.path.join(params.imgs_dir, f'{ii:03}_train_orig.png'), nrow=8)
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs_d0),0,1), os.path.join(params.imgs_dir, f'{ii:03}_train_d0.png'), nrow=8)
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs_w),0,1), os.path.join(params.imgs_dir, f'{ii:03}_train_w.png'), nrow=8)
print("Averaged {} stats:".format('train'), metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def val(data_loader: Iterable, ldm_ae: AutoencoderKL, ldm_decoder: AutoencoderKL, msg_decoder: nn.Module, vqgan_to_imnet:nn.Module, key: torch.Tensor, params: argparse.Namespace):
header = 'Eval'
metric_logger = utils.MetricLogger(delimiter=" ")
ldm_decoder.decoder.eval()
for ii, imgs in enumerate(metric_logger.log_every(data_loader, params.log_freq, header)):
imgs = imgs.to(device)
imgs_z = ldm_ae.encode(imgs) # b c h w -> b z h/f w/f
imgs_z = imgs_z.mode()
imgs_d0 = ldm_ae.decode(imgs_z) # b z h/f w/f -> b c h w
imgs_w = ldm_decoder.decode(imgs_z) # b z h/f w/f -> b c h w
keys = key.repeat(imgs.shape[0], 1)
log_stats = {
"iteration": ii,
"psnr": utils_img.psnr(imgs_w, imgs_d0).mean().item(),
# "psnr_ori": utils_img.psnr(imgs_w, imgs).mean().item(),
}
attacks = {
'none': lambda x: x,
'crop_01': lambda x: utils_img.center_crop(x, 0.1),
'crop_05': lambda x: utils_img.center_crop(x, 0.5),
'rot_25': lambda x: utils_img.rotate(x, 25),
'rot_90': lambda x: utils_img.rotate(x, 90),
'resize_03': lambda x: utils_img.resize(x, 0.3),
'resize_07': lambda x: utils_img.resize(x, 0.7),
'brightness_1p5': lambda x: utils_img.adjust_brightness(x, 1.5),
'brightness_2': lambda x: utils_img.adjust_brightness(x, 2),
'jpeg_80': lambda x: utils_img.jpeg_compress(x, 80),
'jpeg_50': lambda x: utils_img.jpeg_compress(x, 50),
}
for name, attack in attacks.items():
imgs_aug = attack(vqgan_to_imnet(imgs_w))
decoded = msg_decoder(imgs_aug) # b c h w -> b k
diff = (~torch.logical_xor(decoded>0, keys>0)) # b k -> b k
bit_accs = torch.sum(diff, dim=-1) / diff.shape[-1] # b k -> b
word_accs = (bit_accs == 1) # b
log_stats[f'bit_acc_{name}'] = torch.mean(bit_accs).item()
log_stats[f'word_acc_{name}'] = torch.mean(word_accs.type(torch.float)).item()
for name, loss in log_stats.items():
metric_logger.update(**{name:loss})
if ii % params.save_img_freq == 0:
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs),0,1), os.path.join(params.imgs_dir, f'{ii:03}_val_orig.png'), nrow=8)
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs_d0),0,1), os.path.join(params.imgs_dir, f'{ii:03}_val_d0.png'), nrow=8)
save_image(torch.clamp(utils_img.unnormalize_vqgan(imgs_w),0,1), os.path.join(params.imgs_dir, f'{ii:03}_val_w.png'), nrow=8)
print("Averaged {} stats:".format('eval'), metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# run experiment
main(params)