Skip to content

Latest commit

 

History

History
112 lines (82 loc) · 3.94 KB

readme.MD

File metadata and controls

112 lines (82 loc) · 3.94 KB

🔥 CREATING AIR FLIGHT PASSENGER FORECAST MODELS

✏️ PROJECT EXPLANATION

This project used Airport passenger of San Fransisco Airport from 2005 to 2016

Click here to get the Dataset

This Project was created to aim these following objectives :

✏️ PROJECT WORKFLOW

  1. Dataset Preparation
  2. EDA
  3. Model Selection + Cross Validation
  4. Model Result

🔧 Package / Tech Stack Used


  • Time Series Model Development
    1. Statsmodels
    2. Pandas
    3. Numpy
    4. Neural Prophet
    5. sklearn
    6. xgboost

⌛ FUTURE PLANS


  • Time Series Model Development
    1. Using LSTM, GRU, another complex model.
    2. Statistical Model like VAR
    3. Statspace Models : Kalman Filter, Hidden Markov Model

🔨 INSTALLATION


  1. Clone the repo
#clone the repository first 
    git clone https://github.com/fakhrirobi/airtraffic_forecast.git
  1. change directory
#change directory 
    pip install . 
  1. Data Preparation
    cd airtraffic_forecast/data/prepare_data
    python generate_modified_data.py 
  1. Begin Modelling
    cd airtraffic_forecast/modelling
    # --method : statistical, nn, ML 
    python start_modelling.py --method 

📗 Modelling Result

RMSE Score MAE Score MAPE Score model_name
1 2.9332e+10 120793 0.028163 RandomForestRegressor
2 3.94132e+10 160227 0.0383572 XGBRegressor
3 8.33301e+11 823894 0.195214 SVRegressor
4 1.98349e+11 364297 0.0889501 KNeighborsRegressor
5 1.51227e+11 323093 0.0806871 LinearRegression
6 3.45687e+11 484491 0.11898 PassiveAggressiveRegressor
7 4.29552e+09 52562.4 0.0160444 NeuralProphet_hidden_layer3_epoch_3_weekly_seasonality12
8 0.00879809 0.0750631 0.00494308 SARIMA_1,0,1_1,0,1,12_ts_log
9 0.000148183 0.00870418 0.0005716 SARIMA_1,0,1_1,0,1,12_ts_log_moving_avg
10 3.51627e+10 127422 0.0310854 SARIMA_1,0,1_1,0,1,12_ts_moving_avg
11 0.000148428 0.00895553 0.000589953 SARIMA_1,0,1_1,0,1,12_ts_log_ewma
12 0.00758013 0.0672904 0.977108 SARIMA_1,0,1_1,0,1,12_ts_log_ewma_diff
13 7724.52 69.9086 0.0352462 SARIMA_1,0,1_1,0,1,12_sqrt_ts
14 308.334 10.7121 0.00528588 SARIMA_1,0,1_1,0,1,12_moving_avg_sqrt

..

📕 ODDS


Dashboard Development :

  1. Statsmodels SARIMAX syntax is not similar to sklearn .fit(data) but instead the data is defined when defining the model

..

📧 Connect With Me


  1. Linkedin
  2. Medium
  3. Kaggle