-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevaluate_mp.py
528 lines (442 loc) · 15.7 KB
/
evaluate_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# 2023 (c) LINE Corporation
# Authors: Robin Scheibler
# MIT License
import argparse
import json
import math
import os
import time
from collections import defaultdict
from pathlib import Path
import fast_bss_eval
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio
import yaml
from omegaconf import OmegaConf
from pesq import pesq
from pystoi import stoi
# from sdes.sdes import MixSDE
import utils
from datasets import WSJ0_mix
from pl_model import DiffSepModel
def get_default_datasets(n_spkr=2, fs=8000):
ds = OmegaConf.load("config/datamodule/default.yaml")
for split in ["val", "test", "train"]:
ds[split].dataset.path = "data/wsj0_mix"
for split in ["libri-clean", "libri-noisy"]:
ds[split].dataset.path = "data/LibriMix"
for split in ds:
if "_target_" in ds[split].dataset:
ds[split].dataset.pop("_target_")
ds[split].dataset.n_spkr = n_spkr
ds[split].dataset.fs = fs
return ds
def save_fig(x_result, intmet, target, fig_out_fn, n_fig=6, vmin=-75, vmax=0):
# back to cpu
x_result = x_result.cpu()
target = target.cpu()
# Save figure of evolution
fig, axes = plt.subplots(2, n_fig + 1, figsize=(20, 4))
steps = np.round(np.linspace(0, 1, n_fig) * (len(intmet) - 1)).astype(np.int64)
for idx, step in enumerate(steps):
arr = intmet[step][0].cpu().numpy()
for i in range(2):
im = axes[i, idx].specgram(arr[0, i], vmin=vmin, vmax=vmax)
axes[i, idx].set_xticks([])
axes[i, idx].set_yticks([])
if i == 0:
axes[i, idx].set_title(
f"t={(len(intmet) - 1 - step) / (len(intmet) - 1):.2f}"
)
for i in range(2):
tgt = target[0, i] + np.random.randn(*target[0, i].shape) * 1e-10
*_, im = axes[i, -1].specgram(tgt, vmin=vmin, vmax=vmax)
axes[i, -1].set_xticks([])
axes[i, -1].set_yticks([])
if i == 0:
axes[i, -1].set_title("clean")
fig.tight_layout()
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
fig.savefig(fig_out_fn)
plt.close(fig)
def save_samples(mix, x_result, target, wav_out_fn, fs):
# save samples
all_wav = torch.cat((mix[0].cpu(), x_result[0, :].cpu(), target[0].cpu()), dim=0,)
all_wav = all_wav.cpu()
all_wav = all_wav[:, None, :]
max_val = abs(all_wav).max()
all_wav *= 0.95 / max_val
"""
torchaudio.save(
str(wav_out_fn.with_suffix(".mix.wav")),
all_wav[0],
fs,
)
"""
torchaudio.save(
str(wav_out_fn.with_suffix(".enh0.wav")), all_wav[1], fs,
)
torchaudio.save(
str(wav_out_fn.with_suffix(".enh1.wav")), all_wav[2], fs,
)
"""
torchaudio.save(
str(wav_out_fn.with_suffix(".tgt0.wav")),
all_wav[3],
fs,
)
torchaudio.save(
str(wav_out_fn.with_suffix(".tgt1.wav")),
all_wav[4],
fs,
)
"""
def compute_metrics(ref, est, fs, pesq_mode="nb", stoi_extended=True):
si_sdr, si_sir, si_sar, perm = fast_bss_eval.si_bss_eval_sources(
ref, est, zero_mean=False, compute_permutation=True, clamp_db=100,
)
# order according to SIR
est = est[:, perm[0], :]
est = est.cpu().numpy()
ref = ref.cpu().numpy()
p_esq = []
s_toi = []
for src_idx in range(est.shape[-2]):
p_esq.append(pesq(fs, ref[0, src_idx], est[0, src_idx], pesq_mode))
s_toi.append(stoi(ref[0, src_idx], est[0, src_idx], fs, extended=stoi_extended))
return si_sdr, si_sir, si_sar, p_esq, s_toi, perm
def summarize(results, ignore_inf=True):
metrics = set()
summary = defaultdict(lambda: 0)
denominator = defaultdict(lambda: 0)
for res in results.values():
for met, val in res.items():
metrics.add(met)
val_mean = np.mean(val)
if ignore_inf or not np.isinf(val_mean):
summary[met] += val_mean
denominator[met] += 1
summary["number"] += 1
for met in metrics:
summary[met] = (summary[met] / denominator[met]).tolist()
return dict(summary)
def evaluate_process(args, output_dir, split, start_idx, stop_idx, device):
fig_dir = output_dir / "fig"
wav_dir = output_dir / "wav"
if args.dl_workers is None:
num_dl_workers = os.cpu_count()
else:
num_dl_workers = args.dl_workers
# special case to get the original data
no_proc_flag = str(args.ckpt) == "__no_proc__"
default_datasets = get_default_datasets()
if no_proc_flag:
# load validation dataset
dataset = WSJ0_mix(path="data/wsj0_mix", n_spkr=2, cut="max", split=split)
else:
# load the config file
with open(args.ckpt.parents[1] / "hparams.yaml", "r") as f:
hparams = yaml.safe_load(f)
config = hparams["config"]
if split in config["datamodule"]:
ds_args = config["datamodule"][split]["dataset"]
else:
ds_args = default_datasets[split].dataset
# remove the target because we don't use 'instantiate'
ds_args.pop("_target_", None)
# check the location of the data
data_path = Path(ds_args["path"])
if not data_path.exists():
if split in ["val", "test"]:
ds_args["path"] = "./data/wsj0_mix"
else:
ds_args["path"] = "./data/LibriMix"
# load validation dataset
dataset = WSJ0_mix(**ds_args)
# load model
model = DiffSepModel.load_from_checkpoint(str(args.ckpt))
# transfer to GPU
model = model.to(device)
model.eval()
# prepare inference parameters
sampler_kwargs = model.config.model.sampler
N = sampler_kwargs.N if args.N is None else args.N
corrector_steps = (
sampler_kwargs.corrector_steps
if args.corrector_steps is None
else args.corrector_steps
)
snr = sampler_kwargs.snr if args.snr is None else args.snr
denoise = args.denoise
# save the sampling freq of the dataset
fs = dataset.fs
# we only access a subset of the dataset
dataset = torch.utils.data.Subset(dataset, range(start_idx, stop_idx))
# wraps datasets into dataloaders
dataloader = torch.utils.data.DataLoader(
dataset,
shuffle=False,
num_workers=num_dl_workers,
pin_memory=True,
batch_size=1,
)
results = dict()
for batch_idx, (mix, target) in zip(range(start_idx, stop_idx), dataloader):
# decide if we want to save some sample and figure
save_samples_fig = args.save_n is None or (batch_idx < args.save_n)
mix = mix.to(device)
target = target.to(device)
length = target.shape[-1] / fs
if no_proc_flag:
x_result = torch.broadcast_to(mix, target.shape)
nfe = 0
intmet = None
t_proc = 0.0
save_samples_fig = False
else:
(mix, target), *__ = model.normalize_batch((mix, target))
sampler = model.get_pc_sampler(
"reverse_diffusion",
"ald2",
mix,
N=N,
denoise=denoise,
intermediate=save_samples_fig,
corrector_steps=corrector_steps,
snr=snr,
schedule=args.schedule,
)
t_s = time.perf_counter()
x_result, nfe, *others = sampler()
t_proc = time.perf_counter() - t_s
if len(others) > 0:
intmet = others[0]
# compute the metrics before separation
si_sdr, si_sir, si_sar, p_esq, s_toi, perm = compute_metrics(
target,
x_result,
fs,
pesq_mode=args.pesq_mode,
stoi_extended=not args.stoi_no_extended,
)
# fix the permutation
x_result = x_result[:, perm[0], :]
results[batch_idx] = {
"batch_idx": batch_idx,
"si_sdr": si_sdr.tolist(),
"si_sir": si_sir.tolist(),
"si_sar": si_sar.tolist(),
"pesq": p_esq,
"stoi": s_toi,
"nfe": nfe,
"runtime": t_proc,
"len_s": length,
}
if start_idx == 0:
# only print for a single process
print(f"{split}", end=" ")
for met, val in results[batch_idx].items():
print(f"{met}={np.mean(val):.3f}", end=" ")
print()
if save_samples_fig:
# fix permutations of intermediate results
if intmet is not None:
for idx in range(len(intmet)):
xt, xt_mean = intmet[idx]
intmet[idx] = (xt[:, perm[0], :], xt_mean[:, perm[0], :])
fig_out_dir = fig_dir / split
fig_out_dir.mkdir(exist_ok=True, parents=True)
wav_out_dir = wav_dir / split
wav_out_dir.mkdir(exist_ok=True, parents=True)
save_fig(
x_result,
intmet,
target,
fig_out_dir / f"evo_{batch_idx:04d}.pdf",
n_fig=6,
vmin=-75,
vmax=0,
)
save_samples(mix, x_result, target, wav_out_dir / f"{batch_idx:04d}", fs)
return split, results
def str_or_int(x):
try:
x = int(x)
except ValueError:
pass
return x
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
parser = argparse.ArgumentParser(
description="Run evaluation on validation or test dataset"
)
parser.add_argument("ckpt", type=Path, help="Path to checkpoint to use")
parser.add_argument(
"-o", "--output_dir", type=Path, default="results", help="The output folder"
)
parser.add_argument(
"-d",
"--device",
type=str_or_int,
nargs="+",
default=[0],
help="Device to use (default: cuda:0)",
)
parser.add_argument(
"-w", "--workers", default=0, type=int, help="Number of parallel processes"
)
parser.add_argument(
"--dl-workers",
default=0,
type=int,
help="Number of workers for the dataloader (default 0)",
)
parser.add_argument(
"--tag",
type=str,
help=(
"A tag name for the experiment. If not provided,"
" the experiment and checkpoints name are used."
),
)
parser.add_argument(
"-l", "--limit", type=int, help="Limit the number of samples to process"
)
parser.add_argument(
"--save-n",
type=int,
help="Save a limited number of output samples (default: save all)",
)
parser.add_argument(
"--splits",
required=True,
choices=["test", "val", "libri-clean", "libri-noisy"],
nargs="+",
help="Splits of the dataset to process.",
)
parser.add_argument("-N", type=int, default=None, help="Number of steps")
parser.add_argument(
"--snr", type=float, default=None, help="Step size of corrector"
)
parser.add_argument(
"--corrector-steps", type=int, default=None, help="Number of corrector steps"
)
parser.add_argument(
"--denoise", type=bool, default=True, help="Use denoising in solver"
)
parser.add_argument(
"--pesq-mode",
type=str,
choices=["nb", "wb"],
default="nb",
help="Mode for PESQ 'wb' or 'nb'",
)
parser.add_argument(
"--stoi-no-extended", action="store_true", help="Disable extended mode for STOI"
)
parser.add_argument(
"-s", "--schedule", type=str, help="Pick a different schedule for the inference"
)
parser.add_argument(
"--n-proc", type=int, help="Number of parallel processes to use"
)
args = parser.parse_args()
splits = args.splits
if len(splits) == 0:
parser.error("No split requested, add --splits <split_name> ...")
output_dir_base = args.output_dir
# special case to get the original data
no_proc_flag = str(args.ckpt) == "__no_proc__"
if no_proc_flag:
if args.tag is None:
output_dir = output_dir_base / "mix"
else:
output_dir = output_dir_base / args.tag
else:
# load the config file
hparams = OmegaConf.load(args.ckpt.parents[1] / "hparams.yaml")
config = hparams.config
# prepare inference parameters
sampler_kwargs = config.model.sampler
N = sampler_kwargs.N if args.N is None else args.N
corrector_steps = (
sampler_kwargs.corrector_steps
if args.corrector_steps is None
else args.corrector_steps
)
snr = sampler_kwargs.snr if args.snr is None else args.snr
denoise = args.denoise
tag_inf = f"N-{N}_snr-{snr}_corrstep-{corrector_steps}_denoise-{denoise}_schedule-{args.schedule}"
# create folder name based on experiment and checkpoint
exp_name = args.ckpt.parents[1].name
ckpt_name = args.ckpt.stem
if args.tag is None:
output_dir = output_dir_base / f"{exp_name}_{ckpt_name}_{tag_inf}"
else:
output_dir = output_dir_base / f"{args.tag}_{tag_inf}"
output_dir.mkdir(exist_ok=True, parents=True)
fig_dir = output_dir / "fig"
wav_dir = output_dir / "wav"
print(f"Created output folder {output_dir}")
# load default dataset config
default_datasets = get_default_datasets()
# now divide the tasks betwen the workers
tasks = []
dev_idx = 0
for split in splits:
# load dataset to get the length
if no_proc_flag:
# load validation dataset
dataset = WSJ0_mix(path="data/wsj0_mix", n_spkr=2, cut="max", split=split)
else:
if split in config.datamodule:
ds_args = config.datamodule[split].dataset
else:
ds_args = default_datasets[split].dataset
# remove the target because we don't use 'instantiate'
ds_args.pop("_target_", None)
# check the location of the data
data_path = Path(ds_args.path)
if not data_path.exists():
ds_args.path = "./data/wsj0_mix"
# load validation dataset
dataset = WSJ0_mix(**ds_args)
# compute the number of files
if args.limit is not None:
n_samples = min(args.limit, len(dataset))
else:
n_samples = len(dataset)
n_per_worker = math.floor(n_samples / max(1, args.workers))
start_idx = 0
while start_idx < n_samples:
stop_idx = min(start_idx + n_per_worker, n_samples)
tasks.append(
(args, output_dir, split, start_idx, stop_idx, args.device[dev_idx])
)
start_idx = stop_idx
dev_idx = (dev_idx + 1) % len(args.device)
if args.workers == 0:
results = []
for task_args in tasks:
results.append(evaluate_process(*task_args))
else:
with utils.SyncProcessingPool(args.workers) as pool:
for task_args in tasks:
pool.push(evaluate_process, task_args)
results, *_ = pool.wait_results(progress_bar=True)
# aggregate results
agg_results = dict(zip(splits, [dict() for s in splits]))
for (sp, res) in results:
agg_results[sp].update(res)
for split, results in agg_results.items():
with open(output_dir / f"{split}.json", "w") as f:
json.dump(results, f, indent=2)
summary = summarize(results)
with open(output_dir / f"{split}_summary.json", "w") as f:
json.dump(summary, f, indent=2)
print(f"Summary for {split}")
print(summary)