-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
122 lines (98 loc) · 4.2 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import random
import numpy as np
from collections import deque
from game import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LEARNING_RATE = 0.001
class Agent :
def __init__(self) :
self.number_of_games = 0
self.epsilon = 0
self.gamma = 0.9
self.memory = deque(maxlen=MAX_MEMORY)
self.model = Linear_QNet(11, 256, 3)
self.trainer = QTrainer(self.model, lr=LEARNING_RATE, gamma=self.gamma)
def get_state(self, game) :
head = game.snake[0]
point_left = Point(head.x - 20, head.y)
point_right = Point(head.x + 20, head.y)
point_up = Point(head.x, head.y - 20)
point_down = Point(head.x, head.y + 20)
direction_left = game.direction == Direction.LEFT
direction_right = game.direction == Direction.RIGHT
direction_up = game.direction == Direction.UP
direction_down = game.direction == Direction.DOWN
state = [
(direction_right and game.is_collision(point_right)) or
(direction_left and game.is_collision(point_left)) or
(direction_up and game.is_collision(point_up)) or
(direction_down and game.is_collision(point_down)),
(direction_up and game.is_collision(point_right)) or
(direction_down and game.is_collision(point_left)) or
(direction_left and game.is_collision(point_up)) or
(direction_right and game.is_collision(point_down)),
(direction_down and game.is_collision(point_right)) or
(direction_up and game.is_collision(point_left)) or
(direction_right and game.is_collision(point_up)) or
(direction_left and game.is_collision(point_down)),
direction_left,
direction_right,
direction_up,
direction_down,
game.food.x < game.head.x,
game.food.x > game.head.x,
game.food.y < game.head.y,
game.food.y > game.head.y
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done) :
self.memory.append((state, action, reward, next_state, done))
def train_long_memory(self) :
if len(self.memory) > BATCH_SIZE :
mini_sample = random.sample(self.memory, BATCH_SIZE)
else :
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
def train_short_memory(self, state, action, reward, next_state, done) :
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state) :
self.epsilon = 80 - self.number_of_games
final_move = [0,0,0]
if random.randint(0,200) < self.epsilon :
move = random.randint(0,2)
final_move[move] = 1
else :
state_0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state_0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train() :
# plot_scores = []
# plot_mean_scores = []
# total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True :
state_old = agent.get_state(game)
final_move = agent.get_action(state_old)
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
agent.train_short_memory(state_old, final_move, reward, state_new, done)
agent.remember(state_old, final_move, reward, state_new, done)
if done :
game.reset()
agent.number_of_games += 1
agent.train_long_memory()
if score > record :
record = score
agent.model.save()
print('Game : ', agent.number_of_games, ', Score : ', score, ', Record : ', record)
if __name__ == '__main__' :
train()