-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvtslr_model.py
146 lines (119 loc) · 5.45 KB
/
cvtslr_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import utils
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from modules import BiLSTMLayer, TemporalConv
from gloss_encoder import SelfAttentionAdapter
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class NormLinear(nn.Module):
def __init__(self, in_dim, out_dim):
super(NormLinear, self).__init__()
self.weight = nn.Parameter(torch.Tensor(in_dim, out_dim))
nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))
def forward(self, x):
outputs = torch.matmul(x, F.normalize(self.weight, dim=0))
return outputs
class CVTSLRModel(nn.Module):
def __init__(
self, num_classes, c2d_type, conv_type, use_bn=False,
hidden_size=1024, gloss_dict=None, loss_weights=None,
weight_norm=True, share_classifier=True, args=None
):
super(CVTSLRModel, self).__init__()
self.loss = dict()
self.num_classes = num_classes
self.loss_weights = loss_weights
self.conv2d = getattr(models, c2d_type)(pretrained=True)
self.conv2d.fc = Identity()
self.conv1d = TemporalConv(input_size=512,
hidden_size=hidden_size,
conv_type=conv_type,
use_bn=use_bn,
num_classes=num_classes)
self.decoder = utils.Decode(gloss_dict, num_classes, 'beam')
self.temporal_model = BiLSTMLayer(rnn_type='LSTM', input_size=hidden_size, hidden_size=hidden_size,
num_layers=2, bidirectional=True)
if weight_norm:
self.classifier = NormLinear(hidden_size, self.num_classes)
self.conv1d.fc = NormLinear(hidden_size, self.num_classes)
else:
self.classifier = nn.Linear(hidden_size, self.num_classes)
if share_classifier:
self.conv1d.fc = self.classifier
self.register_backward_hook(self.backward_hook)
self.GlossEncoder = SelfAttentionAdapter(hidden_size=hidden_size, num_layers=2, num_heads=4)
self.gloss_linear1 = nn.Linear(hidden_size, self.num_classes)
self.gloss_linear2 = nn.Linear(self.num_classes, hidden_size)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.use_seqAE = args.use_seqAE
if self.use_seqAE.lower()=="vae":
self.bink_mean_linear = nn.Linear(hidden_size,hidden_size)
self.bink_mean_var = nn.Linear(hidden_size,hidden_size)
def backward_hook(self, module, grad_input, grad_output):
for g in grad_input:
g[g != g] = 0
def masked_bn(self, inputs, len_x):
def pad(tensor, length):
return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()])
x = torch.cat([inputs[len_x[0] * idx:len_x[0] * idx + lgt] for idx, lgt in enumerate(len_x)])
x = self.conv2d(x)
x = torch.cat([pad(x[sum(len_x[:idx]):sum(len_x[:idx + 1])], len_x[0])
for idx, lgt in enumerate(len_x)])
return x
# for AE during training only
def repara(self, z_mean, z_log_var, sample=False):
if sample:
epsilon = torch.randn_like(z_mean)
return z_mean + torch.exp(z_log_var / 2) * epsilon
else:
return z_mean + torch.exp(z_log_var / 2)
def eval_network(self, x, len_x):
if len(x.shape) == 5:
batch, temp, channel, height, width = x.shape
inputs = x.reshape(batch * temp, channel, height, width)
framewise = self.masked_bn(inputs, len_x)
framewise = framewise.reshape(batch, temp, -1).transpose(1, 2)
else:
framewise = x
conv1d_outputs = self.conv1d(framewise, len_x)
x = conv1d_outputs['visual_feat']
lgt = conv1d_outputs['feat_len']
visual_features = x
# Video-Gloss Adapter
x_tmp = self.gloss_linear1(x)
x = self.gloss_linear2(x_tmp)
# Create masks for the self-attention Gloss encoder
max_len = lgt.max().int()
bt_size = lgt.numel()
mask = torch.arange(0, max_len)
mask_0 = mask.unsqueeze(0).expand(bt_size, max_len).lt(lgt.unsqueeze(1))
mask = mask_0.unsqueeze(1) # B,1,L
mask = mask.to(device=x.device)
# Gloss Encoder
x = x.transpose(0,1) # T,B,D-> B,T,D
x = self.GlossEncoder(x, mask=mask.bool()) # B,T, D
# set sample=False if not in VAE training stage
if self.use_seqAE.lower()=="vae":
z_mean = self.bink_mean_linear(x)
z_log_var = self.bink_mean_var(x)
x = self.repara(z_mean, z_log_var, sample=False)
x = x.transpose(0,1) # B,T,D -> T,B,D
# Seq Decoder
tm_outputs = self.temporal_model(x, lgt, enforce_sorted=True)
outputs = self.classifier(tm_outputs['predictions']) # T,B,D -> T,B,C
pred = None if self.training \
else self.decoder.decode(outputs, lgt, batch_first=False, probs=False)
return {
"framewise_features": framewise,
"visual_features": visual_features,
"feat_len": lgt,
"conv_logits": conv1d_outputs['conv_logits'],
"sequence_logits": outputs,
"recognized_sents": pred
}