forked from philipperemy/tensorflow-class-activation-mapping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
54 lines (42 loc) · 2.03 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from class_activation_map import *
from lenet_slim import le_net
from utils import *
batch_size = 256
dataset_percentage = 1.0 # 1.0 takes 100k rows. 0.1 takes 10k rows.
if __name__ == '__main__':
[images_train, labels_train], [images_test, labels_test] = read_dataset(dataset_percentage)
print('Finished reading the dataset...')
im_width = images_train.shape[1]
im_height = images_train.shape[1]
assert im_height == im_width
x = tf.placeholder(tf.float32, (None, im_width, im_width, 3))
y, top_conv = le_net(images=x, num_classes=10)
class_activation_map = get_class_map(0, top_conv, im_width)
y_ = tf.placeholder(tf.int64, [None])
cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y, y_))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init = tf.initialize_all_variables()
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(tf.all_variables(), max_to_keep=10)
sess = tf.Session()
sess.run(init)
step_start = restore(sess, saver)
print('Finished initializing the model...')
for i in range(step_start, 100000):
print(i)
batch_xs, batch_ys, _ = next_batch(images_train, labels_train, i, batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 100 == 0:
save(sess, saver, i)
accuracy_list = []
j = 0
while True:
batch_xt, batch_yt, reset = next_batch(images_test, labels_test, j, batch_size, debug=False)
if reset:
break
accuracy_list.append(sess.run(accuracy, feed_dict={x: batch_xt, y_: batch_yt}))
j += 1
print('steps =', i * batch_size, 'mean accuracy =', np.mean(accuracy_list))
inspect_class_activation_map(sess, class_activation_map, top_conv, images_test,
labels_test, i, 50, x, y_, y)