Skip to content

Latest commit

 

History

History
83 lines (66 loc) · 2.44 KB

README.md

File metadata and controls

83 lines (66 loc) · 2.44 KB

CV-exercise

Introduction

This is a repository for some of my PyTorch practices. Mainly consists of generative models.

Including:

  • GANs
    • DCGAN
    • SRGAN
  • VAEs
    • Vanilla VAE
  • Diffusion Models
    • DDPM
  • Vision Transformers
    • ViT

TODO

  • Add argument parses
  • Use wandb
  • Implement NeRF
  • Implement SR3(diffusion involved)
  • Implement Feature Transfer Models
  • ...

References

Publications

Projects from Git

Settings

Datasets

Datasets should be download to data directory as the datasets implementation files(.py in datasets) require. Including: SVHN, RealSR, CelebA

Requirements

Pytorch, cudatoolkit, cuDNN, numpy, pandas, scikit-image, matplotlib, pillow, tqdm

Some of the results

Vanilla VAE

CelebA:

Vanilla VAE

DCGAN

CelebA:

DCGAN_3

DCGAN_1

DCGAN_2

SRGAN

RealSR: Low Resolution | Super Resolution (4x) | High Resolution (4x)

SRGAN_1 SRGAN_2 SRGAN_3 SRGAN_4 SRGAN_5 SRGAN_6