-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlearning.py
190 lines (160 loc) · 5.18 KB
/
qlearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import matplotlib.pyplot as plt
import numpy as np
import random
from nim_env import NimEnv, OptimalPlayer
def measure_performance(agent, other_epsilon, N=500):
'''
Measure performance of a given agent against the OptimalPlayer,
over N games, switching the initial player at each game.
Parameters
----------
agent : Agent.
agent playing againt the OptimalPlayer.
other_epsilon : float in [0, 1].
epsilon of the epsilon-greedy policy for the OptimalPlayer.
N : int.
number of games to be played.
Returns
-------
won_ratio : float.
ratio of games won by agent.
'''
players = [agent, OptimalPlayer(other_epsilon)]
Nwin = 0
Nloss = 0
env = NimEnv()
for i in range(N):
env.reset()
env.current_player = i % 2
while not env.end:
try:
env.step(players[env.current_player].act(env.heaps))
except AssertionError as err:
# End the game due to invalid move!
env.end = True
env.winner = env.current_player
if env.winner == 0:
Nwin += 1
else:
Nloss += 1
return (Nwin - Nloss) / N
def Mopt(agent, N=500):
'''
Measure performance of a given agent against the OptimalPlayer with epsilon=0,
over N games, switching the initial player at each game.
Parameters
----------
agent : Agent.
agent playing againt the OptimalPlayer.
N : int.
number of games to be played.
Returns
-------
mopt : float.
ratio of games won by agent.
'''
return measure_performance(agent, 0)
def Mrand(agent, N=500):
'''
Measure performance of a given agent against the OptimalPlayer with epsilon=1,
over N games, switching the initial player at each game.
Parameters
----------
agent : Agent.
agent playing againt the OptimalPlayer.
N : int.
number of games to be played.
Returns
-------
mrand : float.
ratio of games won by agent.
'''
return measure_performance(agent, 1)
def get_possible_actions(heaps):
'''
Compute the list of allowed actions for a given state.
Parameters
----------
heaps : list of integers
list of heap sizes.
Returns
-------
actions : list
actions[0] is a list of heaps to take from (starts at 1)
actions[1] is the number of elements taken from heaps actions[0]
'''
actions = []
for i, heap_size in enumerate(heaps):
for number in range(1, heap_size+1):
actions.append((i+1, number))
return actions
def call_on_step(agent, state, action, reward, next_state, debug):
'''
Wrapper for Agent.on_step, allowing to call it only for instances
of Agent, ignoring it for the OptimalPlayer.
Parameters
----------
agent : Agent or env.OptimalPlayer.
agent for which on_step should be called.
state : list of integers
list of heap sizes.
action : list
action[0] is the heap to take from (starts at 1)
action[1] is the number of elements taken from heap action[0]
reward : int.
current reward.
new_state : list of integers
list of heap sizes.
debug : bool.
if true, print debug information.
'''
if hasattr(agent, "on_step"):
agent.on_step(state, action, reward, next_state, debug)
def run_q_learning(env: NimEnv, agent1, agent2, debug=False, catch_invalid_moves=False):
'''
Core logic of the game, running a match of Nim until its end and
updating parameters of the agents.
Parameters
----------
env: NimEnv.
instance of the environment for the game Nim.
agent1 : Agent or env.OptimalPlayer.
agent2 : Agent or env.OptimalPlayer.
debug : bool.
if true, print debug information.
catch_invalid_moves : bool.
if true, invalid moves are caught.
Returns
-------
reward : int.
final reward for agent1.
'''
players = [agent1, agent2]
#print("New game")
if (debug):
env.render()
while not env.end:
#print("state = %s, player = %d" % (env.heaps, env.current_player))
try:
env.step(players[env.current_player].act(env.heaps))
reward = int(env.end)
except AssertionError as err:
if catch_invalid_moves:
# End the game due to invalid move!
env.end = True
env.winner = env.current_player
env.heaps = [0, 0, 0]
reward = -1
break ## !! we don't want to update the Q-value of the previous state.
#print("Caught invalid move!")
else:
# Otherwise make sure to propagate on invalid moves
raise err
if (debug):
env.render()
if env.num_step > 1:
call_on_step(players[env.current_player], env.prec_state, env.prec_action, -reward, env.heaps, debug)
# Last state
if env.num_step > 0:
call_on_step(players[env.current_player ^ 1], env.last_state, env.last_action, reward, env.heaps, debug)
return (-1) ** env.winner