This repository has been archived by the owner on Jun 1, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdata_handler.py
50 lines (40 loc) · 1.72 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import cv2
import os
import sys
def get_2d_array(im_path):
"""Return image scaled with factor 0.5 as numpy array."""
im_color = cv2.imread(im_path) # Read the image as a numpy array.
im_color = im_color[32:64 + 32, 32:64 + 32]
# Shape = (64,64,3) (x_pixels,y_pixels, color_channels)
im_color = cv2.resize(im_color, (32,32)) # Rescale the image
# Shape = (32,32,3) (x_pixels*scale, y_pixels*scale, color_channels)
im = np.zeros(shape=(32,32,1)) # Create an empty array with the final shape (32,32,1)
for i, x in enumerate(im_color): # Fill the array
for n, y in enumerate(x): # Note: We cannot use cv2.cvtColor(im_color, cv2.COLOR_BGR2GRAY), because
im[i][n][0] = (y[0] + y[1] + y[2]) / 3 # that will return an array with the shape (32,32), but we need
return im # an array with shape (32,32,1)
def get_label(name):
"""Returns label number for file name
>>> get_label("class_10_Index_3454.jpeg")
10
"""
return int(name.split("_")[1])
def main():
n_labels = 47
n_images = 101784
path = "./data" # Path to images
images = np.zeros(shape=(n_images, 32, 32, 1)) # Array with all images
labels = np.zeros(shape=(n_images, n_labels)) # Array with all labels, one-hot encoded
# Convert all images to numpy arrays
for i, file in enumerate(os.listdir(path)):
label = get_label(file)
image = get_2d_array(os.path.join(path, file))
images[i] = image
labels[i, label] = 1
print(str(i / n_images * 100) + "% done")
# Save arrays
np.save("nist_labels_32x32", labels)
np.save("nist_images_32x32", images)
if __name__ == "__main__":
main()