-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
111 lines (101 loc) · 4.33 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
configfile: "config.yaml"
import pandas as pd
phenotype_df = pd.read_csv(
config["phenotype_annotation"],
dtype={
"phenotype": "string",
"GWAS_result_file": "string",
}
)
rule all:
input:
expand("{dir}/{phenotype}/GWAS_variants_clumped_mac.parquet", dir=config["output_dir"], phenotype=phenotype_df["phenotype"].tolist())
#Downloads GWAS-results from the UK-Biobank for a given phenotype. The filename of the GWAS-results file for this phenotype is set in the phenotype_annotation file specified in the config.
rule download_GWAS_results:
threads: 1
resources:
mem_mb=500
output:
"{dir}/{phenotype}/sumstats.tsv.gz"
params:
download_link=lambda wc: f"https://pan-ukb-us-east-1.s3.amazonaws.com/sumstats_flat_files/{phenotype_df.set_index('phenotype').loc[wc.phenotype]['GWAS_result_file']}"
shell:
"wget -q -O {output} {params.download_link}"
#Unzips the GWAS-results and removes unnecessary columns
rule extract_GWAS_results:
threads: 1
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}sumstats.tsv.gz"
output:
"{dir}sumstats.tsv"
shell:
"gzip -d -k {input}"
#Uses a python script in order to convert the GWAS log p values into normal values. Also sets the variant IDs to match with the plink2 binary genotype data. Only variants with a p-value below the threshold are written into the output.
rule preprocess_p:
threads: 1
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}sumstats.tsv"
output:
"{dir}p_values.tsv"
shell:
f"python preprocess.py {{input}} {{output}} {config['p_threshold']}"
#Extracts the column containing the variant IDs. This format can then be used by plink2 as a filter.
rule get_var_list:
threads: 1
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}p_values.tsv"
output:
"{dir}varlist.tsv"
shell:
r"awk '{{print $7}}' {input} > {output}"
#Using plink2 the genotype data is extracted for the significant variants and written into plink1.9 format. This is necessary because plink2 does not support clumping (yet).
rule create_subset_binary:
threads: 16
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}varlist.tsv"
output:
"{dir}subset_binary.bed"
shell:
f"plink2 --pfile {config['plink2_binary_files']} --extract {{input}} --make-bed --out {{wildcards.dir}}subset_binary"
#Using plink1.9 the variants are clumped by LD and distance. The index variant IDs are written into the output file.
rule clump:
threads: 16
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
gwas_res="{dir}p_values.tsv",
subset_binary="{dir}subset_binary.bed"
output:
"{dir}GWAS_variants.clumped.vars"
shell:
f"plink -bfile {{wildcards.dir}}subset_binary --clump {{input.gwas_res}} --clump-snp-field varid --clump-field {config['p_val_col']} --clump-p1 {config['p_threshold']} --clump-p2 {config['p_threshold']} --clump-r2 {config['ld_threshold']} --clump-kb {config['kb_radius']} --out {{wildcards.dir}}GWAS_variants" + "\n" + r"awk '{{print $3}}' {wildcards.dir}GWAS_variants.clumped > {output}"
#Using plink2 the allele counts for all individuals are extracted from the genotype data for all index variants
rule get_mac:
threads: 16
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}GWAS_variants.clumped.vars"
output:
"{dir}GWAS_variants_clumped_mac.raw"
shell:
f"plink2 --pfile {config['plink2_binary_files']} --extract {{input}} --export A --out {{wildcards.dir}}GWAS_variants_clumped_mac"
#For efficient columnar reading of allele counts by variant ID, the raw allele counts are written to a parquet file using a python script:
rule write_parquet:
threads: 16
resources:
mem_mb=lambda wildcards, attempt, threads: (4000 * threads) * attempt
input:
"{dir}GWAS_variants_clumped_mac.raw"
output:
"{dir}GWAS_variants_clumped_mac.parquet"
shell:
f"python create_parquet.py {{input}} {{output}}"