-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStateSpace.py
225 lines (189 loc) · 8.03 KB
/
StateSpace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy
from scipy import stats, signal
from sklearn.linear_model import RidgeCV
from sklearn.decomposition import PCA
from matplotlib.pyplot import figure as Figure
def make_delays(matrix, delays = range(5), fill = 0):
"""
Makes a version of the a matrix with delays
:param matrix:
:param delays:
:param fill:
:return:
"""
if (matrix.ndim == 1):
matrix = matrix[...,None]
out = numpy.ones((matrix.shape[0], matrix.shape[1] * len(delays)),
dtype = matrix.dtype) * fill
for i in range(len(delays)):
delay = delays[i]
start = i * matrix.shape[1]
end = start + matrix.shape[1]
if delay < 0:
out[:delay, start:end] = matrix[-delay:, :]
elif delay == 0:
out[:, start:end] = matrix
else:
out[delay:, start:end] = matrix[:-delay, :]
return out
def estimate_devonvolved_response(features, responses, delays, **kwargs):
"""
Uses voxelwise modelling to estimate the brain activity had it not been passed
through the hemodynamic response function.
:param features: [TR x voxel] brain activity
:param responses: [TR x features] feature space used to estimate brain activity
:param delays: number of delays to use in VM
:param kwargs: parameters to RidgeCV
:return: [TR x voxels] estimated brain activity
"""
ridge = RidgeCV(**kwargs)
ridge.fit(make_delays(features, delays), responses)
mean_weights = ridge.coef_.reshape(delays, features.shape[1], -1).mean(0)
return stats.zscore(numpy.dot(features, mean_weights))
def extract_state_space_positions(conditions, responses, num_PCs = 24):
"""
Find the low-dimensional state space corresponding to the conditions
:param conditions: [TR x dimensions] state variables
:param responses: [TR x voxels] brain activity
:param num_PCs: int, number of PCs to use for denoising
:return: [TR x dimensions] projects of brain activity into the task-related subspace
"""
parameters = numpy.ones([conditions.shape[0], conditions.shape[1] + 1])
parameters[:, :-1] = conditions
covar = numpy.dot(parameters.transpose(), parameters)
coeffs = numpy.dot(numpy.linalg.pinv(covar), numpy.dot(parameters.transpose(), responses))
pca = PCA(num_PCs)
pca.fit(responses)
coeffs_denoised = numpy.dot(pca.components_.transpose(),
numpy.dot(pca.components_,
coeffs.transpose()))
# note QR decomposition can cause sign flips
Q, _ = numpy.linalg.qr(coeffs_denoised, 'full')
state_directions = Q[:, :conditions.shape[1]]
positions = numpy.dot(responses, state_directions)
return stats.zscore(positions)
def subsample_passive_data(data, selection):
"""
Subsamples the parts of the passive data that had the same stimuli as the attentive condition
:param data: deconvoled passive data
:param selection: binary indicator for each second that shows which section is used
:return: subsampled data
"""
upsampled = signal.resample(data, 7200)
subsampled = upsampled[selection[0, 0]:selection[0, 1], :]
for i in range(1, selection.shape[0]):
subsampled = numpy.vstack((subsampled, upsampled[selection[i, 0]:selection[i, 1], :]))
downsampled = signal.resample(subsampled, 900)
return downsampled
def JSD(mean1, cov1, mean2, cov2, samples = 1000):
"""
Empirical calculation of jensen-shannon divergence between two MVNs
:param mean1: mean of first MVN
:param cov1: covariance of first MVN
:param mean2: mean of second MVN
:param cov2: covariance of second MVN
:param samples: number of samples to take
:return: JSD value
"""
samples1 = stats.multivariate_normal.rvs(mean1, cov1, samples)
samples2 = stats.multivariate_normal.rvs(mean2, cov2, samples)
pdf1 = lambda x: stats.multivariate_normal.pdf(x, mean1, cov1, allow_singular = True)
pdf2 = lambda x: stats.multivariate_normal.pdf(x, mean2, cov2, allow_singular = True)
pdfMean = lambda x: 0.5 * (pdf1(x) + pdf2(x))
KLD1Mean = lambda x: (1.0 / samples) * numpy.sum(numpy.log2(pdf1(x) / pdfMean(x)))
KLD2Mean = lambda x: (1.0 / samples) * numpy.sum(numpy.log2(pdf2(x) / pdfMean(x)))
divergence = 0.5 * (KLD1Mean(samples1) + KLD2Mean(samples2))
return divergence
def stimulus_contains_class(stimulus, is_in_class):
"""
At each TR, does the stimulus contain this class of objects?
:param stimulus: features
:param is_in_class: indicator of whether each feature is in the desired class
:return: boolean presence of the class at each TR
"""
hasLabel = numpy.zeros([stimulus.shape[0]], dtype = bool)
for i in range(stimulus.shape[0]):
for j in range(stimulus.shape[1]):
if stimulus[i, j] > 0 and is_in_class[j]:
hasLabel[i] = True
return hasLabel
def sort_by_condition(values, conditions, n_conditions = None):
"""
Separates the set of points in state space by the actual trial condition
:param values: set of points in [state dim][time]
:param conditions: conditions, unique int per condition, assumes [0, n_conditions]
:param n_conditions: number of unique conditions, if None is max(conditions) + 1
"""
if n_conditions == -1:
n_conditions = int(numpy.max(conditions) + 1)
conditions = conditions.astype(int)
sorted_values = []
if len(values.shape) > 1:
for i in range(n_conditions):
nPoints = numpy.sum(conditions == i);
trial = numpy.zeros([values.shape[0], nPoints])
sorted_values.append(trial)
counts = numpy.zeros([n_conditions], dtype = int)
for i in range(values.shape[1]):
condition = conditions[i]
sorted_values[condition][:, counts[condition]] = values[:, i]
counts[condition] += 1
else:
for i in range(n_conditions):
nPoints = numpy.sum(conditions == i)
trial = numpy.zeros([nPoints])
sorted_values.append(trial)
counts = numpy.zeros([n_conditions], dtype = int)
for i in range(values.shape[0]):
condition = conditions[i]
sorted_values[condition][counts[condition]] = values[i]
counts[condition] += 1
return sorted_values
def plot_state_space_projection(values, conditions, figure_size = (5, 5), alpha = 0.5):
"""
Plots things in 2D for a single attentional condition
:param values: [state dimension][time]
:param conditions: conditions points by actual condition? vect of ints, one per 4 conds
:param colormap: conditions to use per actual condition
:param figure_size: matplotlib figure size, useful when embedding into ipython notebook
:param alpha: alpha of the individual dots
:return: reference to figure object
"""
figure = Figure(figsize = figure_size)
axes = figure.add_subplot(111, aspect = 'equal')
values_by_condition = sort_by_condition(values, conditions, 4)
centroids = numpy.zeros([4, values.shape[0]])
for i in range(4):
centroids[i, :] = numpy.mean(values_by_condition[i], 1)
# QR decomposition can flip signs on axes
# check and flip back if needed
x_sign = 1
y_sign = 1
if centroids[3, 0] < centroids[0, 0]:
x_sign = -1
if centroids[3, 1] < centroids[0, 1]:
y_sign = -1
axes.scatter(x_sign * values_by_condition[0][0, :], y_sign * values_by_condition[0][1, :], alpha = alpha,
marker = 'o', c = '#ff5100', edgecolor = 'none', lw = 0)
axes.scatter(x_sign * values_by_condition[1][0, :], y_sign * values_by_condition[1][1, :], alpha = alpha,
marker = 'o', c = '#91d90d', edgecolor = 'none', lw = 0)
axes.scatter(x_sign * values_by_condition[2][0, :], y_sign * values_by_condition[2][1, :], alpha = alpha,
marker = 'o', c = '#0084ff', edgecolor = 'none', lw = 0)
axes.scatter(x_sign * values_by_condition[3][0, :], y_sign * values_by_condition[3][1, :], alpha = alpha,
marker = 'o', c = '#a200ff', edgecolor = 'none', lw = 0)
for i in range(4):
colors = {0: '#ff5100', 1: '#91d90d', 2: '#0084ff', 3: '#a200ff'}
axes.scatter(x_sign * centroids[i, 0], y_sign * centroids[i, 1], alpha = 1,
c = "#000000", marker = '+', s = 700, linewidth = 8)
axes.scatter(x_sign * centroids[i, 0], y_sign * centroids[i, 1], alpha = 1,
c = colors[i], marker = '+', s = 500, linewidth = 4)
axes.set_xlabel('Human presence')
axes.set_ylabel('Vehicle presence')
axes.title.set_fontsize(16)
axes.xaxis.label.set_fontsize(20)
axes.yaxis.label.set_fontsize(20)
axes.set_xlim([-4, 4])
axes.set_ylim([-4, 4])
for item in (axes.get_xticklabels() + axes.get_yticklabels()):
item.set_fontsize(12)
return figure