-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
executable file
·42 lines (32 loc) · 1.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 7 15:21:11 2021
@author: Gabriele Amorosino
"""
import argparse
from UnetBrainSeg import init_unet,unet_test
gpu_num=str(1)
IMG_WIDTH = 256
IMG_HEIGHT = 256
IMG_LENGTH = 256
dims=(IMG_WIDTH, IMG_HEIGHT, IMG_LENGTH)
#%% Main
if __name__ == '__main__':
## Parsing Inputs
parser = argparse.ArgumentParser(description='Predict segmentation')
parser.add_argument('fullpath', metavar='images', type=str, nargs='+',
help='fullpath of T1w file file')
parser.add_argument('fullpath1', metavar='labels', type=str, nargs='+',
help='fullpath of ouput segmentation file')
parser.add_argument('fullpath2', metavar='checkpoints_dir', type=str, nargs='+',
help='fullpath of checkpoints directories')
args = parser.parse_args()
TEST_PATH_x=args.fullpath[0]
TEST_PATH_y=args.fullpath1[0]
#outputfile=args.fullpath1[0]
checkpoints_dir=args.fullpath2[0]
## initialize the U-Net
unet=init_unet(checkpoints_dir,gpu_num=gpu_num)
## Perform prediction and save results
unet_test(TEST_PATH_x,TEST_PATH_y, unet, dims,iamge_type='float32',label_type='float32',ncores=1)