forked from osm-fr/bano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf_vers_osm_housenumbers.py
executable file
·830 lines (780 loc) · 37.3 KB
/
pdf_vers_osm_housenumbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This script is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# It is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with it. If not, see <http://www.gnu.org/licenses/>.
import os
import sys
import time
import math
import os.path
import traceback
import subprocess
import xml.parsers.expat
import xml.etree.ElementTree as ET
from math import *
try:
from osgeo import osr # apt-get install python-gdal
except:
traceback.print_exc()
print "Please install python-gdal (sudo apt-get install python-gdal)"
from mytools import toposort
THIS_DIR = os.path.dirname(__file__)
REFERENCE_HOUSENUMBERS = os.path.join(THIS_DIR, "reference-housenumbers.svg")
SOURCE_TAG = u"cadastre-dgi-fr source : Direction Générale des Finances Publiques - Cadastre. Mise à jour : " + time.strftime("%Y")
class Point(object):
""" An object with an x and a y field"""
__slots__ = ('x','y')
def __init__(self, x, y):
assert type(x) == float
assert type(y) == float
self.x = x
self.y = y
def __len__(self):
return 2
def __getitem__(self, key):
if key == 0: return self.x
if key == 1: return self.y
raise IndexError()
def __str__(self):
return str(self.x) + "," + str(self.y)
def __repr__(self):
return "Point(" + repr(self.x) + ", " + repr(self.y) + ")"
def is_empty(self):
return False
class BoundingBox(object):
__slots__ = ("x1","y1","x2","y2")
def __init__(self, x1,y1,x2,y2):
self.x1 = min(x1,x2)
self.y1 = min(y1,y2)
self.x2 = max(x1,x2)
self.y2 = max(y1,y2)
def extend_to_bbox(self, bbox):
x1 = min (self.x1, bbox.x1)
y1 = min (self.y1, bbox.y1)
x2 = max (self.x2, bbox.x2)
y2 = max (self.y2, bbox.y2)
return BoundingBox(x1,y1,x2,y2)
def p1(self):
return Point(self.x1, self.y1)
def p2(self):
return Point(self.x2, self.y2)
def __getitem__(self, key):
if key == 0: return self.x1
if key == 1: return self.y1
if key == 2: return self.x2
if key == 3: return self.y2
raise IndexError()
def width(self):
return self.x2 - self.x1
def height(self):
return self.y2 - self.y1
def center(self):
return Point((self.x1+self.x2)/2,
(self.y1+self.y2)/2)
def is_point_inside(self, point):
return (point.x >= self.x1) and (point.x <= self.x2) and \
(point.y >= self.y1) and (point.y <= self.y2)
def __str__(self):
return "(" + str(self.x1) + ", " + str(self.y1) + ", "+ str(self.x2) + ", " + str(self.y2) + ")"
def __repr__(self):
return "Position(" + repr(self.x1) + ", " + repr(self.y1) + ", "+ repr(self.x2) + ", " + repr(self.y2) + ")"
@staticmethod
def of_points(points):
xs = [p.x for p in points]
ys = [p.y for p in points]
return BoundingBox( min(xs), min(ys), max(xs), max(ys))
class Transform(object):
def __init__(self):
pass
def transform_point(self, point):
raise Exception("not implemented")
def transform_points(self, points):
return [self.transform_point(p) for p in points]
def transform_bbox(self, bbox):
p1 = self.transform_point(bbox.p1())
p2 = self.transform_point(bbox.p2())
return BoundingBox.of_points([p1,p2])
class CadastreToOSMTransform(Transform):
"""Transformation from IGNF coordinates used by the cadastre
into coordinates used by OSM"""
def __init__(self, cadastre_IGNF_code):
Transform.__init__(self)
source = osr.SpatialReference();
target = osr.SpatialReference();
source.ImportFromProj4(
"+init=IGNF:" + cadastre_IGNF_code + " +wktext");
target.ImportFromEPSG(4326);
self.transformation = osr.CoordinateTransformation(
source, target)
def transform_point(self, point):
x,y,z = self.transformation.TransformPoint(point[0], point[1], 0.0)
return Point(x,y)
class OSMToCadastreTransform(Transform):
"""Transformation from cordinates used by OSM
to IGNF coordinates used by the cadastre"""
def __init__(self, cadastre_IGNF_code):
Transform.__init__(self)
source = osr.SpatialReference();
target = osr.SpatialReference();
target.ImportFromProj4(
"+init=IGNF:" + cadastre_IGNF_code + " +wktext");
source.ImportFromEPSG(4326);
self.transformation = osr.CoordinateTransformation(
source, target)
def transform_point(self, point):
x,y,z = self.transformation.TransformPoint(point[0], point[1], 0.0)
return Point(x,y)
class PDFToCadastreTransform(Transform):
"""Transformation from the coordinates used inside a PDF, into the coordinate of the cadastre"""
def __init__(self, pdf_bbox, cadastre_bbox):
Transform.__init__(self)
Transform.__init__(self)
self.pdf_bbox = pdf_bbox
self.cadastre_bbox = cadastre_bbox
def transform_point(self, point):
return Point(
self.cadastre_bbox.x1 +
(point[0] - self.pdf_bbox.x1) *
self.cadastre_bbox.width() / self.pdf_bbox.width(),
self.cadastre_bbox.y1 +
(point[1] - self.pdf_bbox.y1)
* self.cadastre_bbox.height() / self.pdf_bbox.height())
class CompositeTransform(Transform):
"""Composition of many transformations"""
def __init__(self, *transforms):
Transform.__init__(self)
self.transforms = transforms
def transform_point(self, point):
for t in self.transforms:
point = t.transform_point(point)
return point
def peek(list):
if len(list):
return list[-1]
else:
return None
class Path(object):
""" Representation d'un path falicitant la reconnaisance.
Un path est composé de deux champs:
- une chaîne représentant une liste de commandes
- une liste de points (x,y)
Les commandes peuvent être:
M : move (1 argument)
L : line (1 argument)
C : curve (3 arguments)
Q : quadratic (2 arguments)
Z : close (0 argument)
"""
__slots__ = ('commands','points','most_distant_point_index', 'angle_and_points_for_path_recognition', 'style', 'd')
commands_argument_count = { 'M': 1, 'L':1, 'C':3, 'Q':2,'Z':0}
def __init__(self, commands, points, style="", d=None):
self.commands = commands
self.points = points
self.most_distant_point_index = None
self.angle_and_points_for_path_recognition = {}
self.style = style
self.d = d
def __str__(self):
result = []
i = 0
for c in self.commands:
result.append(c)
for foo in range(Path.commands_argument_count[c]):
result.append(str(self.points[i]))
i = i + 1
return "\n".join(result)
def __repr__(self):
return "Path(" + str(self) + ")"
def bbox(self, i=None):
# aproximation
if i == None:
return BoundingBox.of_points(self.points)
else:
return BoundingBox.of_points(self.points[:i])
def p0_distance(self, i=None):
if i == None: i = self.get_p0_most_distant_point_index()
(x1, y1), (x2, y2) = self.points[0], self.points[i]
return sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))
def get_angle_and_points_for_path_recognition(self, i):
"""
Move, rotate and scale the list of points in order to facilitate
recognition.
The following transformations are applied:
- We first move the points so that the first one be in (0,0),
i.e. we move everypoints by (-x1,-y1)
- Then we rotate and scale the points so that the i commes
at position (1,0)
"""
if i not in self.angle_and_points_for_path_recognition:
x1,y1 = self.points[0] # le premier point
x2, y2 = self.points[i] # le second point
# le rayon =
r = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1))
if (r == 0.0):
self.points_for_path_recognition[i] = 0, self.points
else:
# l'angle:
t = atan2( (y2-y1), (x2-x1))
cosTbyR = cos(-t) / r
sinTbyR = sin(-t) / r
self.angle_and_points_for_path_recognition[i] = t, [
Point(
# move rotate and scale the coordinates:
cosTbyR * (x-x1) - sinTbyR * (y-y1),
sinTbyR * (x-x1) + cosTbyR * (y-y1))
for x,y in self.points ]
return self.angle_and_points_for_path_recognition[i]
def get_p0_most_distant_point_index(self):
""" retourne l'index du point le plus distant du premier"""
if self.most_distant_point_index == None:
max_squaredist = 0
max_i = 0
x0,y0 = self.points[0]
for i in range(1,len(self.points)):
xi, yi = self.points[i]
squaredist = (xi-x0)*(xi-x0) + (yi-y0)*(yi-y0)
if squaredist > max_squaredist:
max_squaredist = squaredist
max_i = i
self.most_distant_point_index = max_i
return self.most_distant_point_index
#def is_similar_to(self, other, tolerance = 0.05):
# i = self.get_p0_most_distant_point_index()
# return self.commands == other.commands and \
# maxdiff(self.get_points_for_path_recognition(i),
# other.get_points_for_path_recognition(i)) \
# <= tolerance
def startswith(self, other, tolerance = 0.05, min_scale = 0.9, max_scale=1.1):
if self.commands.startswith(other.commands):
i = other.get_p0_most_distant_point_index()
scale_factor = self.p0_distance(i) / other.p0_distance(i)
if scale_factor >= min_scale and scale_factor <= max_scale:
other_angle, other_points = other.get_angle_and_points_for_path_recognition(i)
self_angle, self_points = self.get_angle_and_points_for_path_recognition(i)
if maxdiff(self_points[:len(other.points)], other_points) < tolerance:
result = self_angle - other_angle
if result <= -math.pi:
result += 2*math.pi
elif result > math.pi:
result -= 2*math.pi
elif result == 0.0:
# renvoie quelque chose d'evalué à True proche de 0:
result = sys.float_info.min
return result
return False
@staticmethod
def from_svg(d):
""" Create a Path from a svg d string"""
commands = []
points = []
tokens = [ t for t in Path.__svg_path_tokenizer(d)]
tokens.reverse()
current_point = Point(0.0, 0.0)
while tokens:
t = tokens.pop()
if t in ['M','L']:
while True:
points.append(Point(tokens.pop(), tokens.pop()))
commands.append(t)
current_point = points[-1]
if type(peek(tokens)) != float: break
t = 'L' # M subsequent values becomes L
elif t in ['m', 'l']:
while True:
# convert to absolute:
points.append(Point(current_point.x + tokens.pop(), current_point.y + tokens.pop()))
commands.append(t.upper())
current_point = points[-1]
if type(peek(tokens)) != float: break
t = 'L' # M subsequent values becomes L
elif t in ['H','h','V','v']:
while True:
# convert to 'L'
if t == 'H':
points.append(Point(tokens.pop(), current_point.y))
elif t == 'h':
points.append(Point(current_point.x + tokens.pop(), current_point.y))
elif t == 'V':
points.append(Point(current_point.x, tokens.pop()))
elif t == 'v':
points.append(Point(current_point.x, current_point.y + tokens.pop()))
commands.append('L')
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t == 'C':
while True:
for i in range(3):
points.append(Point(tokens.pop(), tokens.pop()))
commands.append('C')
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t == 'c':
while True:
# convert to absolute
for i in range(3):
points.append(Point(current_point.x + tokens.pop(), current_point.y + tokens.pop()))
commands.append('C')
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t in ['S', 's']:
while True:
if peek(commands) == 'C':
# the control point is the reflextion of the previous control point
previous_control_point = points[-2]
points.append(Point(
current_point.x - previous_control_point.x + current_point.x,
current_point.y - previous_control_point.y + current_point.y))
else:
# no previous control point, use the current point
points.append(Point(current_point.x, current_point.y))
for i in range(2):
if t == 'S':
points.append(Point(tokens.pop(), tokens.pop()))
else:
# Convert to absolute:
points.append(Point(
current_point.x + tokens.pop(),
current_point.y + tokens.pop()))
commands.append('C')
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t == 'Q':
while True:
for i in range(2):
points.append(Point(tokens.pop(), tokens.pop()))
commands.append('Q')
#Path.__convert_last_quadratic_command_to_cubic(commands,points)
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t == 'q':
while True:
for i in range(2):
# Convert to absolute:
points.append(Point(
current_point.x + tokens.pop(),
current_point.y + tokens.pop()))
commands.append('Q')
#Path.__convert_last_quadratic_command_to_cubic(commands,points)
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t in ['T', 't']:
while True:
if peek(commands) == 'Q':
# the control point is the refextion of the previous control point
previous_control_point = points[-2]
points.append(Point(
current_point.x - previous_control_point.x + current_point.x,
current_point.y - previous_control_point.y + current_point.y))
else:
# no previous control point, use the current point
points.append(Point(current_point.x, current_point.y))
if t == 'T':
points.append(Point(tokens.pop(), tokens.pop()))
else:
# Convert to absolute:
points.append(Point(
current_point.x + tokens.pop(),
current_point.y + tokens.pop()))
commands.append('Q')
#Path.__convert_last_quadratic_command_to_cubic(commands,points)
current_point = points[-1]
if type(peek(tokens)) != float: break
elif t in ['A','a']:
raise Exception("unsuported svg path command: " + str(t) + " : " + d)
elif t in ['Z','z']:
commands.append('Z')
#pass
else:
raise Exception("invalid path " + str(t) + " : " + d)
return Path("".join(commands), points, d=d)
#@staticmethod
#def __convert_last_quadratic_command_to_cubic(commands, points):
# """ inkscape utilisé pour éditer les paths à reconnaître transforme
# malheureusement toute les commandes quadratic en cubic
# on fait donc de même pour pour pouvoir reconnaitre les path.
# Formule trouvée ici:
# http://fontforge.org/bezier.html
# """
# assert(commands[-1] == 'Q')
# commands[-1] = 'C'
# QP0 = points[-3]
# QP1 = points[-2]
# QP2 = points[-1]
# CP0 = QP0
# CP1 = Point(QP0[0] + (QP1[0] - QP0[0]) * 2 / 3, QP0[1] + (QP1[1] - QP0[1]) * 2 / 3) # QP0 + 2/3 *(QP1-QP0)
# CP2 = Point(QP2[0] + (QP1[0] - QP2[0]) * 2 / 3, QP2[1] + (QP1[1] - QP2[1]) * 2 / 3) # QP2 + 2/3 *(QP1-QP2)
# CP3 = QP2
# #points[-3] = CP0
# points[-2] = CP1
# points[-1] = CP2
# points.append(CP3)
@staticmethod
def __svg_path_tokenizer(d):
i = 0
while i < len(d):
c = d[i]
o = ord(c)
if o in (32, 9, 10, 13,44):
i = i + 1
elif o >= 45 and o <= 57:
j = i+1
while j < len(d):
oj = ord(d[j])
if ((oj < 45) or (oj > 57)) and (oj != ord('e')):
break
j = j + 1
yield float(d[i:j])
i = j
elif c in ['M','L','H','V','C','S','Q','T','A','Z', 'm','l','h','v','c','s','q','t','a','z']:
yield c
i = i + 1
else:
raise Exception("invalid character in path data: chr("
+ str(ord(d[i])) + ") = '" + d[i] + "' : " + d)
def projection_point(angle, point):
return math.cos(angle) * point[0] + math.sin(angle) * point[1]
def projections_points(angle, points):
cosa = math.cos(angle)
sina = math.sin(angle)
return [cosa*p[0] + sina * p[1] for p in points]
def largeur_path(angle, path):
positions = projections_points(angle, path.points)
return max(positions) - min(positions)
def rapport_l2_sur_l1(path):
""" Calcule le rapport entre le premier et le deuxième segment du path.
Cela est utilisé en pratique pour distinguer le l minuscule du
I majuscule
"""
def distance((x1,y1),(x2,y2)):
return math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))
l1 = distance(path.points[0], path.points[1])
l2 = distance(path.points[1], path.points[2])
return l2 / l1
class TextPathRecognizer(object):
__slots__ = ('database', 'tolerance', 'min_scale', 'max_scale', 'styles', 'force_horizontal', 'angle_tolerance_deg', 'space_width')
def __init__(self, tolerance, min_scale, max_scale, styles=[], force_horizontal = False, angle_tolerance_deg = 5):
self.database = {}
self.tolerance = tolerance
self.min_scale = min_scale
self.max_scale = max_scale
self.styles = styles
self.force_horizontal = force_horizontal
self.angle_tolerance_deg = angle_tolerance_deg
self.space_width = None
def add(self, value, path, alternatives=[]):
# On utilise le début de la commande du path comme
# index de la database:
idx = path.commands[:path.commands.index('Z')]
if not idx in self.database:
self.database[idx] = []
self.database[idx].append((value, path, alternatives))
def save_to_svg(self, filename):
f = open(filename,"w")
f.write("""<?xml version="1.0"?>\n<svg
xmlns="http://www.w3.org/2000/svg"
xml:space="preserve"
xmlns:svg="http://www.w3.org/2000/svg"
height="1052.5"
width="1488.75"
version="1.1">
""")
f.write(u"<!-- inversion de l'axe Y pour remettre à l'endroit:\n<g transform='matrix(1,0,0,-1,0,0)'>-->\n".encode("utf-8"))
for elems in self.database.itervalues():
for value, path, _ in elems:
f.write(' <path style="fill:#000000;fill-opacity:1;fill-rule:nonzero;stroke:none"\n d="')
f.write(path.d)
f.write('">\n')
f.write(" <title>" + value + "</title>\n")
f.write(" </path>\n")
f.write("<!--</g>-->\n")
f.write("</svg>\n")
f.close()
def load_from_svg(self, filename):
"""Charge les paths de référence pour la reconnaissance depuis un fichier SVG.
La valeur associée à reconnaître est stockée dans le titre des paths."""
root = ET.parse(filename).getroot()
elems = []
#sys.stdout.write((u"#Charge les path: " + os.path.basename(filename) + "\n").encode("utf-8"))
for p in root.iter('{http://www.w3.org/2000/svg}path'):
# La valeur à reconnaître pour le path est stockée dans le titre:
title = p.find('{http://www.w3.org/2000/svg}title')
if title != None:
elems.append((title.text, Path.from_svg(p.get('d'))))
if len(elems) == 0:
raise Exception("Aucun path avec un titre (<title>) dans le fichier " + filename)
# La façon de reconnaître le texte contenu dans un path consiste à
# comparer le début du path avec chacun des éléments de référence
# conterus dans la database jusqu'à en trouver un qui correspond,
# puis reconnaître la suite du path.
# Pour certains caratère, comme ceux avec accents (ex: é) le
# début du path vas être le même que la version sans sans accent
# (ex: e) donc il est important de comparer d'abord avec la version
# la plus complexe des path pour reconnaître é avant e, sans quoi
# un fois reconnus e, l'accent tout seul qui suit ne serait pas
# reconnu.
# On utilise un tri topologique pour prendre en compte ces dépendances.
# Mais il y a un autre problème à traiter: celui des caractrès
# différents qui sont représentés par un même path éqvivalent mais
# avec un angle différent, c'est le cas du carctère u qui est un n
# à l'envers ou de p et d. On ne peut pas trier ces cas là (car
# c'est une dépendance circulaire) mais on vas les traiter de
# façon particulière, en enregistrant pour chacun d'eux la liste
# des alternatives possibles qu'il faudra potentiellement
# considérer si on l'a reconnu.
deps = { i:set() for i in xrange(len(elems))}
alternatives = [set() for i in xrange(len(elems))]
for i in xrange(len(elems)-1):
value_i, path_i = elems[i]
for j in xrange(i+1,len(elems)):
value_j, path_j = elems[j]
if value_i != value_j:
i_startswith_j = path_i.startswith(path_j, tolerance = self.tolerance, min_scale=self.min_scale, max_scale=self.max_scale)
j_startswith_i = path_j.startswith(path_i, tolerance = self.tolerance, min_scale=self.min_scale, max_scale=self.max_scale)
if i_startswith_j:
if j_startswith_i:
#alternatives[i].add(j)
#alternatives[j].add(i)
angle_deg = abs(int(round(i_startswith_j*180/math.pi)))
#sys.stdout.write((u"#caractère %s ~(%d°) %s\n" % (value_i, (angle_deg/2)*2, value_j)).encode("utf-8"))
if angle_deg < self.angle_tolerance_deg:
alternatives[i].add(j)
#if angle_deg < 5:
# for v,p in [(value_i,path_i), (value_j,path_j)]:
# print " - %s : p0_distance : %f" %(v, p.p0_distance())
# print " len(points) : %d" % len(p.points)
# print " l2 / l1 = %f" % rapport_l2_sur_l1(p)
# #print str([(p.points[i][0]-p.points[i-1][0], p.points[i][1]-p.points[i-1][1]) for i in xrange(1, len(p.points))])
else:
#sys.stdout.write((value_i + " commence par " + value_j + "\n").encode("utf-8"))
deps[i].add(i)
elif j_startswith_i:
#sys.stdout.write((value_j + " commence par " + value_i + "\n").encode("utf-8"))
deps[j].add(i)
for i in toposort(deps):
val, path = elems[i]
alters = [elems[j] for j in alternatives[i]]
self.add(val, path, alters)
# Calcule la distance d'un espace comme la moité de la largeur moyenne des caractères:
# en considérant que les caractères sont horizontal (angle = 0)
largeur_moyenne = sum([largeur_path(0, path) for value,path in elems]) / len(elems)
self.space_width = largeur_moyenne / 2
#print "Largeur espaces = " + str(self.space_width)
def recognize(self, path):
if self.styles:
path_styles = path.style.split(';')
for s in self.styles:
if not s in path_styles: return None
original_path = path
result = ""
if self.force_horizontal:
original_angle = 0.0
else:
original_angle = None
previous_position = None
while len(path.points):
found = False
idx = path.commands[:path.commands.find('Z')]
if idx in self.database:
for value, compare_path, alternatives in self.database[idx]:
startswith = path.startswith(compare_path, tolerance=self.tolerance, min_scale=self.min_scale, max_scale=self.max_scale)
if startswith:
angle = startswith
if original_angle != None:
diff_angle = abs(angle - original_angle)
if diff_angle > math.pi:
diff_angle = abs(2*math.pi - diff_angle)
if (diff_angle * 180 / math.pi) > self.angle_tolerance_deg:
# Ce caractère est reconu mais pas avec le bon angle, on passe
continue
else:
# Le premier caractère du path déterminera l'angle du mot
# PB: traiter les alternatives (par exemple un mot qui commence par u OU n il faut considérer les deux possibilitées,
# qui peuvent ếtre déterminer par l'angle.
# Au lieux d'analyser toutes les alternatives, on vérifie que la positions du point suivant dans le path sera bien
# en avant par rapport au caractère considéré courant.
# FIXME: il faudrait mieux analyser toutes les alternatives possibles et renvoyer la liste de celle qui on reconnu tout le path
positions = projections_points(angle, path.points[:len(compare_path.points)])
if len(path.points) > len(compare_path.points):
mean_cur_position = sum(positions)/len(positions)
next_point_position = projection_point(angle, path.points[len(compare_path.points)])
if next_point_position < mean_cur_position:
#sys.stdout.write((u"caractère rejeté: " + value + "\n").encode("utf-8"))
# Le caractère suivant serait dérrière, on a pas du choisir le bon angle, c'est à dire
# le bon caractère à reconnaître, on continue pour en chercher un autre:
continue
original_angle = angle
#result = result + "angle(%.2f)" % (original_angle*180/math.pi)
if len(alternatives):
# Il y a des alternatives pour ce caractère, on vas utiliser le rapport_l2_l1 pour les
# départager
# NOTE: cela est fait en pratique uniquement pour distinguer le l minuscule du I majuscule
cur_rapport_l2_sur_l1 = rapport_l2_sur_l1(path)
compare_raport_l1_l2 = rapport_l2_sur_l1(compare_path)
for alt_value, alt_path in alternatives:
alt_rapport_l2_sur_l1 = rapport_l2_sur_l1(alt_path)
if abs(cur_rapport_l2_sur_l1-alt_rapport_l2_sur_l1) < abs(cur_rapport_l2_sur_l1-compare_raport_l1_l2):
value = alt_value
compare_raport_l1_l2 = alt_rapport_l2_sur_l1
# Calcule de la position des points por déterminer si il y a un espace
positions = projections_points(original_angle, path.points[:len(compare_path.points)])
if previous_position != None:
distance = min(positions) - previous_position
else:
distance = 0
previous_position = max(positions)
#result = result + "loc[%.2f,%.2f] pos[%.2f .. %.2f]" % (path.points[0][0], path.points[0][1], min(positions), max(positions))
#result = result + (" distance(%.2f)" % distance)
if distance > self.space_width:
result = result + " "
result = result + value
#result = result + ("(%.1f)" % (angle*180/math.pi))
# Maintenant on traite la suite du path:
path = Path(
path.commands[len(compare_path.commands):],
path.points[len(compare_path.points):])
found = True
break;
if not found:
break
if result:
if len(path.points):
# On a pas tout reconnu
result += "???"
position = original_path.bbox().center()
return result, position, original_angle
else:
return None
def maxdiff(points1, points2):
return max(
[ max((abs(points1[i][0] - points2[i][0]),
abs(points1[i][1] - points2[i][1])))
for i in xrange(len(points1))])
class CadastreParser(object):
""" Parse un fichier PDF obtenue depuis le cadastre,
pour y trouver les <path>
Les path qui nous intéressent sont tous dans le même groupe <g>,
donc on ignore completement les transformations de
coordonées (pdf transform).
"""
def __init__(self, path_handlers = None):
self.path_handlers = path_handlers if path_handlers else []
def add_path_handler(self, path_handler):
self.path_handlers.append(handler)
def parse(self, filename):
bbox_filename = os.path.splitext(filename)[0] + ".bbox"
self.cadastre_projection, cadastre_bbox = open(bbox_filename).read().split(":")
self.cadastre_bbox = BoundingBox(*[float(v) for v in cadastre_bbox.split(",")])
self.pdf_bbox = None
ext = os.path.splitext(filename)[1]
if ext == ".svg":
parser = xml.parsers.expat.ParserCreate()
parser.StartElementHandler = self.handle_start_element
parser.ParseFile(open(filename))
elif ext == ".pdf":
pipe = subprocess.Popen([
os.path.join(THIS_DIR, "pdfparser", "pdfparser"),
filename],
bufsize=128*1024, stdout=subprocess.PIPE).stdout
while True:
line = pipe.readline()
if not line:
break
path = Path.from_svg(line.rstrip())
path.style = pipe.readline().rstrip()
self.handle_path(path)
else:
raise Exception("not a pdf or svg filename: " + filename)
def handle_start_element(self, name, attrs):
name = name.lower()
if name.lower() == "path":
path = Path.from_svg(attrs["d"])
if "style" in attrs:
path.style = attrs["style"].replace(" ","")
self.handle_path(path)
def handle_path(self, path):
if self.pdf_bbox == None:
# Try to find the bbox (a white rectangle)
if (path.commands == "MLLLLZ"
and "fill:#ffffff" in path.style.split(";")):
self.pdf_bbox = path.bbox()
self.pdf_to_cadastre_transform = PDFToCadastreTransform(self.pdf_bbox, self.cadastre_bbox).transform_point
#sys.stdout.write("pdf bbox:" + str(self.bbox) + "\n")
else:
for path_handler in self.path_handlers:
if path_handler(path, self.pdf_to_cadastre_transform):
break
def write_osm_for_housenumbers(output, osm_bbox, housenumbers):
#osm_bbox = BoundingBox.of_points(housenumbers.keys())
output.write("<?xml version='1.0' encoding='UTF-8'?>\n")
output.write("<osm version='0.6' generator='%s' upload='false'>\n" % (sys.argv[0],))
id = 0;
for number, position, angle in housenumbers:
id = id-1;
output.write(" <node id='%d' lon='%f' lat='%f'>\n" %
(id, position.x, position.y))
output.write(" <tag k='addr:housenumber' v='%s' />\n"
% (number,))
output.write((" <tag k='source' v='" + SOURCE_TAG + "'' />\n").encode("utf-8"))
output.write(u" <tag k='fixme' v='À vérifier et associer à la bonne rue' />\n".encode("utf-8"))
output.write(" </node>\n")
output.write("</osm>\n")
class HousenumberPathRecognizer(TextPathRecognizer):
def __init__(self):
TextPathRecognizer.__init__(self, tolerance=0.05, min_scale=0.8, max_scale=1.2, styles=["fill:#000000"])
self.load_from_svg(REFERENCE_HOUSENUMBERS)
self.housenumbers = []
def handle_path(self, path, transform):
found = self.recognize(path)
if found:
text, position, angle = found
if text[0] in ["1","2","3","4","5","6","7","8","9"]:
self.housenumbers.append((text, transform(position), angle))
return text.find("???") == -1
return False
def pdf_vers_cadastre_housenumbers(pdf_filename_list):
housenumber_recognizer = HousenumberPathRecognizer()
cadastre_parser = CadastreParser([housenumber_recognizer.handle_path])
for pdf_filename in pdf_filename_list:
cadastre_parser.parse(pdf_filename)
return cadastre_parser.cadastre_projection, housenumber_recognizer.housenumbers
def pdf_vers_osm_housenumbers(pdf_filename_list, osm_output):
cadastre_projection, cadastre_housenumbers = \
pdf_vers_cadastre_housenumbers(pdf_filename_list)
cadastre_to_osm_transform = CadastreToOSMTransform(cadastre_projection).transform_point
osm_housenumbers = [
(value, cadastre_to_osm_transform(position),angle) for (value, position,angle) in
cadastre_housenumbers]
write_osm_for_housenumbers(osm_output, None, osm_housenumbers)
osm_output.flush()
def args_fatal_error(cause):
sys.stdout.write("ERREUR: %s \n" % cause)
sys.stdout.write("USAGE: %s fichier.pdf+ [fichier.osm]\n" % sys.argv[0])
sys.exit(-1)
def main(argv):
if (len(argv) < 2):
args_fatal_error("fichier .pdf non spécifié")
pdf_filename_list = sys.argv[1:]
if pdf_filename_list[-1].endswith(".osm"):
osm_output = open(pdf_filename_list.pop(),"w")
else:
osm_output = sys.stdout
for f in pdf_filename_list:
if (not f.endswith(".svg")) and (not f.endswith(".pdf")):
args_fatal_error("l'argument n'est pas un fichier .pdf ou .svg: " + f)
if not os.path.exists(f):
args_fatal_error("fichier non trouvé: " + f)
bboxfile = f[:-4] + ".bbox"
if not os.path.exists(bboxfile):
args_fatal_error("fichier .bbox correspondant non trouvé: " + bboxfile)
pdf_vers_osm_housenumbers(pdf_filename_list, osm_output)
if __name__ == '__main__':
main(sys.argv)