-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
289 lines (245 loc) · 8.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
'''Some helper functions for PyTorch, including:
- get_mean_and_std: calculate the mean and std value of dataset.
- msr_init: net parameter initialization.
- progress_bar: progress bar mimic xlua.progress.
'''
import math
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
from scipy.stats import pearsonr
def get_mean_and_std(dataset):
r'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=True, num_workers=2
)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:, i, :, :].mean()
std[i] += inputs[:, i, :, :].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
r'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def get_grad_norm(model_params, norm_type='fro', step_size=None):
norm = 0
for p in model_params:
norm += torch.linalg.norm(p.grad.detach().data)
return norm
def visualize_grad_norms(model, writer, idx, norm_type=2, step_size=None):
conv_counter = 0
fc_counter = 0
n_conv = 0
n_fc = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
n_conv += 1
elif isinstance(m, nn.Linear):
n_fc += 1
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
if conv_counter == 0 or conv_counter == n_conv-1:
for n, p in m.named_parameters():
writer.add_histogram('grad / '+name+n, p.grad, idx)
conv_counter += 1
elif isinstance(m, nn.Linear):
if fc_counter == 0 or fc_counter == n_fc-1:
for n, p in m.named_parameters():
writer.add_histogram('grad / '+name+n, p.grad, idx)
fc_counter += 1
def get_weight_norm(model_parameters, norm_type='fro'):
r"""
Return avg. weight norm (default 2-norm, F-norm for matrices) per layer
"""
norm = 0
counter = 0
for p in model_parameters:
counter += 1
norm += torch.linalg.norm(p.data)
return norm / counter
def visualize_weight_norms(model, writer, idx, norm_type='fro'):
conv_counter = 0
fc_counter = 0
n_conv = 0
n_fc = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
n_conv += 1
elif isinstance(m, nn.Linear):
n_fc += 1
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
if conv_counter == 0 or conv_counter == n_conv-1:
for n, p in m.named_parameters():
writer.add_histogram('param / '+name+n, p, idx)
conv_counter += 1
elif isinstance(m, nn.Linear):
if fc_counter == 0 or fc_counter == n_fc-1:
for n, p in m.named_parameters():
writer.add_histogram('param / '+name+n, p, idx)
fc_counter += 1
class Monitor:
r"""
Forked from Spikingjelly
"""
def __init__(self, model):
self.model = model
self.modules = {}
for n, m in self.model.named_modules():
if 'sn' in n:
self.modules[n] = m
self.device = 'cpu'
def _modules(self):
return self.modules
def reset(self):
for name, module in self.modules.items():
setattr(module, 'firing_time', 0)
setattr(module, 'cnt', 0)
def enable(self,):
self.handle = dict.fromkeys(self.modules, None)
self.neuron_cnt = dict.fromkeys(self.modules, None)
for name, module in self.modules.items():
setattr(module, 'neuron_cnt', self.neuron_cnt[name])
self.handle[name] = module.register_forward_hook(self.hook)
self.reset()
def disable(self):
for name, module in self.modules.items():
delattr(module, 'neuron_cnt')
delattr(module, 'firing_time')
delattr(module, 'cnt')
self.handle[name].remove()
@torch.no_grad()
def hook(self, module, input, output):
output_shape = output.shape
data = output.view([-1, ] + list(output_shape[2:])).clone()
data = data.to(self.device)
if module.neuron_cnt is not None:
module.neuron_cnt = data[0].numel()
module.firing_time += torch.sum(data)
module.cnt += data.numel()
def get_avg_firing_rate(
self, all: bool = True, module_name: str = None
) -> torch.Tensor or float:
if module_name is not None:
all = False
if all:
ttl_firing_time = 0
ttl_cnt = 0
for name, module in self.modules.items():
ttl_firing_time += module.firing_time
ttl_cnt += module.cnt
return ttl_firing_time / (ttl_cnt + 1e-6)
else:
if module_name not in self.modules.keys():
raise ValueError(f'Invalid module_name \'{module_name}\'')
module = self.modules[module_name]
return module.firing_time / (module.cnt + 1e-6)
def visualize_spiking_rates(writer, monitor, idx, srtype='train'):
layer_counter = 0
for m in monitor._modules().keys():
layer_counter += 1
sr = monitor.get_avg_firing_rate(all=False, module_name=m)
writer.add_scalar(
'Spiking rate {} / Layer {}'.format(srtype, layer_counter),
sr, idx
)
def pearson_correlation(y, yhat):
temp = 0
timestep = y.size(0)
bsize = y.size(1)
ndim = y.size(-1)
for i in range(ndim):
for j in range(bsize):
cc, p = pearsonr(y[:, j, i], yhat[:, j, i])
temp += cc
return temp / bsize / ndim