-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
633 lines (561 loc) · 25.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
from pools import GaussianMultiSeedPool, GaussianSeedPool
from decoders import EuclideanDecoder
from egnn import EGC, EGNN
from utils.utils import *
from torch_geometric.data import Dataset, Data
from torch_geometric.loader import DataLoader
from torch_geometric.nn import PairNorm
from typing import Optional, List
from argparse import Namespace
import pytorch_lightning as pl
from tqdm import tqdm
import torch.nn as nn
import numpy as np
import torch
class NodeNorm(nn.Module):
def __init__(
self,
unbiased: Optional[bool] = False,
eps: Optional[float] = 1e-5,
root_power: Optional[float] =3
):
super(NodeNorm, self).__init__()
self.unbiased = unbiased
self.eps = eps
self.power = 1 / root_power
def forward(self, x: torch.Tensor):
std = (torch.var(x, unbiased=self.unbiased, dim=-1, keepdim=True) + self.eps).sqrt()
x = x / torch.pow(std, self.power)
return x
def __repr__(self):
return f'{self.__class__.__name__}()'
class EncoderEGNCA(nn.Module):
def __init__(
self,
coord_dim: int,
node_dim: int,
message_dim: int,
init_rand_node_feat: Optional[bool] = False,
act_name: Optional[str] = 'tanh',
n_layers: Optional[int] = 1,
std: Optional[float] = None,
is_residual: Optional[bool] = True,
has_attention: Optional[bool] = False,
has_coord_act: Optional[bool] = True,
fire_rate: Optional[float] = 1.0,
norm_type: Optional[str] = None,
norm_cap: Optional[float] = None,
):
super(EncoderEGNCA, self).__init__()
assert norm_type is None or norm_type == 'nn' or norm_type == 'pn'
assert message_dim >= node_dim
assert 0 < fire_rate <= 1.0
self.std = std
self.fire_rate = fire_rate
self.init_rand_node_feat = init_rand_node_feat
if norm_type == 'nn':
self.normalise = NodeNorm(root_power=2.0 if norm_cap is None else norm_cap)
elif norm_type == 'pn':
self.normalise = PairNorm(scale=1.0 if norm_cap is None else norm_cap)
else:
self.normalise = None
layers = []
for _ in range(n_layers):
layers.append(EGC(
coord_dim=coord_dim,
node_dim=node_dim,
message_dim=message_dim,
act_name=act_name,
is_residual=is_residual,
has_attention=has_attention,
has_coord_act=has_coord_act))
self.egnn = EGNN(layers)
@property
def coord_dim(self):
return self.egnn.layers[0].coord_dim
@property
def node_dim(self):
return self.egnn.layers[0].node_dim
def init_coord(
self,
num_nodes: int,
device: Optional[str] = 'cpu',
dtype: Optional[torch.dtype] = torch.float32
):
coord = torch.empty(num_nodes, self.coord_dim, dtype=dtype, device=device).normal_(self.std)
return coord
def init_node_feat(
self,
num_nodes: int,
device: Optional[str] = 'cpu',
dtype: Optional[torch.dtype] = torch.float32
):
if self.init_rand_node_feat:
node_feat = torch.empty(num_nodes, self.node_dim, dtype=dtype, device=device).normal_(self.std)
else:
node_feat = torch.ones(num_nodes, self.node_dim, dtype=dtype, device=device)
return node_feat
def stochastic_update(
self,
edge_index: torch.LongTensor,
in_coord: torch.Tensor,
in_node_feat: torch.Tensor,
n_nodes: Optional[torch.LongTensor] = None
):
assert 0 < self.fire_rate <= 1
out_coord, out_node_feat = self.egnn(edge_index=edge_index, coord=in_coord, node_feat=in_node_feat)
if isinstance(self.normalise, NodeNorm):
out_node_feat = self.normalise(out_node_feat)
elif isinstance(self.normalise, PairNorm):
out_node_feat = self.normalise(out_node_feat, n_nodes if n_nodes is None else n_nodes2batch(n_nodes))
if 0 < self.fire_rate < 1:
mask = (torch.rand(out_coord.size(0), 1) <= self.fire_rate).byte().to(in_coord.device)
out_coord = (out_coord * mask) + (in_coord * (1 - mask))
out_node_feat = (out_node_feat * mask) + (in_node_feat * (1 - mask))
return out_coord, out_node_feat
def forward(
self,
edge_index: torch.LongTensor,
coord: Optional[torch.Tensor] = None,
node_feat: Optional[torch.Tensor] = None,
n_steps: Optional[int] = 1,
n_nodes: Optional[torch.LongTensor] = None,
return_inter_states: Optional[bool] = False,
progress_bar: Optional[bool] = False,
dtype: Optional[torch.dtype] = torch.float32
):
if coord is None:
num_nodes = edge_index[0].max() + 1 if n_nodes is None else n_nodes.sum().item()
coord = self.init_coord(num_nodes, dtype=dtype, device=edge_index.device)
if node_feat is None:
node_feat = self.init_node_feat(coord.size(0), dtype=dtype, device=coord.device)
loop = tqdm(range(n_steps)) if progress_bar else range(n_steps)
inter_states = [(coord, node_feat)] if return_inter_states else None
for _ in loop:
coord, node_feat = self.stochastic_update(edge_index, coord, node_feat, n_nodes)
if return_inter_states: inter_states.append((coord, node_feat))
return list(map(list, zip(*inter_states))) if return_inter_states else (coord, node_feat)
class FixedTargetGAE(pl.LightningModule):
def __init__(
self,
args: Namespace
):
super().__init__()
# load target geometric graph as model attribute
from data.datasets import get_geometric_graph
target_coord, edge_index = get_geometric_graph(args.dataset)
self.register_buffer('target_coord', target_coord * args.scale)
self.register_buffer('edge_index', edge_index)
self.encoder = EncoderEGNCA(
coord_dim=self.target_coord.size(1),
node_dim=args.node_dim,
message_dim=args.message_dim,
n_layers=args.n_layers,
std=args.std,
act_name=args.act,
is_residual=args.is_residual,
has_attention=args.has_attention,
has_coord_act=args.has_coord_act,
fire_rate=args.fire_rate,
norm_type=args.norm_type)
self.pool = GaussianSeedPool(
pool_size=args.pool_size,
num_nodes=self.target_coord.size(0),
coord_dim=self.target_coord.size(1),
node_dim=args.node_dim,
std=args.std,
std_damage=args.std_damage,
radius_damage=args.std_damage,
device=args.device,
fixed_init_coord=True)
self.register_buffer('init_coord', self.pool.init_coord.clone())
self.mse = nn.MSELoss(reduction='none')
self.args = args
self.save_hyperparameters(ignore=['pool'])
def training_step(
self,
batch: Data,
batch_idx: int
):
# next line increase batch size by increasing dataset length
self.trainer.train_dataloader.loaders.dataset.length = \
list_scheduler_step(self.args.batch_sch, self.current_epoch)
batch_size = len(batch.n_nodes)
n_steps = np.random.randint(self.args.n_min_steps, self.args.n_max_steps + 1)
init_coord, init_node_feat, id_seeds = self.pool.get_batch(batch_size=batch_size)
final_coord, final_node_feat = self.encoder(
batch.edge_index, init_coord, init_node_feat, n_steps=n_steps, n_nodes=batch.n_nodes)
edge_weight = torch.norm(final_coord[batch.rand_edge_index[0]] - final_coord[batch.rand_edge_index[1]], dim=-1)
loss_per_edge = self.mse(edge_weight, batch.rand_edge_weight)
loss_per_graph = torch.stack([lpe.mean() for lpe in loss_per_edge.chunk(batch_size)])
loss = loss_per_graph.mean()
self.pool.update(id_seeds, final_coord, final_node_feat, losses=loss_per_graph)
# display & log
print('%d \t %.6f \t %d \t %.6f \t %.2f' %
(self.current_epoch, loss, batch_size,
self.trainer.optimizers[0].param_groups[0]['lr'], self.pool.avg_reps))
self.log('loss', loss, on_step=True, on_epoch=False, batch_size=batch_size)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.encoder.parameters(), lr=self.args.lr, betas=(self.args.b1, self.args.b2), weight_decay=self.args.wd
)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
factor=self.args.factor_sch,
patience=self.args.patience_sch,
min_lr=1e-5,
verbose=True,
)
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'monitor': 'loss'}
@torch.no_grad()
def eval(
self,
n_steps: int,
init_coord: Optional[torch.Tensor] = None,
init_node_feat: Optional[torch.Tensor] = None,
rotate: Optional[bool] = False,
translate: Optional[bool] = False,
return_inter_states: Optional[bool] = False,
progress_bar: Optional[bool] = True,
dtype: Optional[torch.dtype] = torch.float64
):
self.to(dtype)
if init_coord is None:
init_coord = self.init_coord.clone()
if rotate:
rotation = nn.init.orthogonal_(
torch.empty(self.encoder.coord_dim, self.encoder.coord_dim)
).to(device=self.device, dtype=dtype)
init_coord = torch.matmul(rotation, init_coord.T).T
if translate:
translation = torch.randn(1, self.encoder.coord_dim).to(device=self.device, dtype=dtype)
init_coord += translation
out = self.encoder(
self.edge_index, coord=init_coord, node_feat=init_node_feat, n_steps=n_steps,
return_inter_states=return_inter_states, progress_bar=progress_bar)
return out
@torch.no_grad()
def eval_persistency(
self,
n_step_list: Optional[List[int]] = None,
init_coord: Optional[torch.Tensor] = None,
init_node_feat: Optional[torch.Tensor] = None,
return_final_state: Optional[bool] = False,
dtype: Optional[torch.dtype] = torch.float64
):
self.to(dtype)
if n_step_list is None:
s1, s2 = self.args.n_min_steps, self.args.n_max_steps
n_step_list = [s1, (s1 + s2) // 2, s2] + list(range(100, 1100, 100)) + list(range(10_000, 110_000, 10_000))
if init_coord is None:
init_coord = self.init_coord.clone()
if init_node_feat is None:
init_node_feat = self.init_coord.new_ones(init_coord.shape[0], self.encoder.node_dim)
coord, node_feat = init_coord, init_node_feat
results, progress_bar = dict(), tqdm(range(max(n_step_list) + 1))
for n_step in progress_bar:
if n_step in n_step_list:
results[n_step] = coord_invariant_rec_loss(coord, self.target_coord)
progress_bar.set_postfix_str('[step %d] [loss: %.5f]' % (n_step, results[n_step]), refresh=False)
coord, node_feat = self.encoder(self.edge_index, coord, node_feat)
return (results, coord, node_feat) if return_final_state else results
class GAE(pl.LightningModule):
def __init__(
self,
args: Namespace
):
super().__init__()
self.encoder = EncoderEGNCA(
coord_dim=args.coord_dim,
node_dim=args.node_dim,
message_dim=args.message_dim,
n_layers=args.n_layers,
std=args.std,
act_name=args.act,
is_residual=args.is_residual,
has_attention=args.has_attention,
has_coord_act=args.has_coord_act,
fire_rate=args.fire_rate,
norm_type=args.norm_type,
norm_cap=args.norm_cap)
self.decoder = EuclideanDecoder(
d1=args.d1,
d2=args.d2,
learnable=args.learn_dec)
self.pool = None
if args.pool_size and args.rep_sch:
self.pool = GaussianMultiSeedPool(
pool_size=args.pool_size,
coord_dim=args.coord_dim,
node_dim=args.node_dim,
std=args.std,
device=args.device,
init_rand_node_feat=args.init_rand_node_feat)
self.args = args
self.save_hyperparameters(ignore=['pool'])
def on_train_epoch_start(self):
if self.pool:
self.pool.max_rep = list_scheduler_step(self.args.rep_sch, self.current_epoch)
def _step(
self,
batch: Data,
train: bool
):
n_steps = np.random.randint(self.args.n_min_steps, self.args.n_max_steps + 1)
if self.pool:
init_coord, init_node_feat, id_seeds = self.pool.get_batch(batch.id_graphs, batch.n_nodes)
final_coord, final_node_feat = self.encoder(
batch.edge_index, init_coord, init_node_feat, n_steps=n_steps, n_nodes=batch.n_nodes)
self.pool.update(final_coord, final_node_feat, batch.id_graphs, id_seeds)
else:
final_coord, final_node_feat = self.encoder(batch.edge_index, n_steps=n_steps)
neg_edge_index, n_neg_edges = batched_neg_index_sampling(
batch.neg_edge_index, batch.n_neg_edges, torch.div(batch.n_edges, 2, rounding_mode='trunc'))
loss = self.decoder.bce(final_coord, batch.edge_index, neg_edge_index)
# display log
avg_reps = -1 if self.pool is None else self.pool.avg_reps
print('%s \t %d \t %.5f \t %.6f \t %.2f' %
('TR' if train else 'VA', self.current_epoch, loss,
self.trainer.optimizers[0].param_groups[0]['lr'], avg_reps))
return loss
def training_step(
self,
batch: Data,
batch_idx: int
):
loss = self._step(batch, train=True)
self.log('train_loss', loss, on_step=True, on_epoch=True, batch_size=len(batch.id_graphs))
return loss
def validation_step(
self,
batch: Data,
batch_idx: int
):
loss = self._step(batch, train=False)
self.log('val_loss', loss, on_step=True, on_epoch=True, batch_size=len(batch.id_graphs))
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam([
{'params': self.encoder.parameters(), 'lr': self.args.lr,
'betas': (self.args.b1, self.args.b2), 'weight_decay': self.args.wd},
{'params': self.decoder.parameters(), 'lr': self.args.dlr,
'betas': (self.args.b1, self.args.b2), 'weight_decay': 0}
])
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
factor=self.args.factor_sch,
patience=self.args.patience_sch,
min_lr=1e-5,
verbose=True,
)
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'monitor': 'val_loss_epoch'}
@torch.no_grad()
def eval_dataset(
self,
dataset: Dataset,
n_steps: Optional[int] = 1,
threshold: Optional[float] = 0.5,
progress_bar_encoder: Optional[bool] = False,
dtype: Optional[torch.dtype] = torch.float64
):
self.to(dtype)
self.decoder.threshold = threshold
pred_coord_list, pred_edge_index_list = [], []
for graph in tqdm(dataset):
pred_coord_list.append(self.encoder(
graph.edge_index.to(self.device), n_steps=n_steps, progress_bar=progress_bar_encoder, dtype=dtype)[0])
pred_edge_index_list.append(self.decoder.decode_adj(pred_coord_list[-1])[0])
return pred_coord_list, pred_edge_index_list
@torch.no_grad()
def eval_persistency(
self,
dataset: Dataset,
n_step_list: Optional[List[int]] = None,
threshold: Optional[float] = 0.5,
n_evaluations: Optional[int] = 1,
batch_size: Optional[int] = None,
average_results: Optional[bool] = True,
dtype: Optional[torch.dtype] = torch.float64
):
self.to(dtype)
self.decoder.threshold = threshold
if n_step_list is None:
s1, s2 = self.args.n_min_steps, self.args.n_max_steps
n_step_list = [s1, (s1 + s2) // 2, s2] + list(range(100, 1100, 100)) + list(range(10_000, 110_000, 10_000))
results = {n_step: {'bce': [], 'f1': [], 'cm': []} for n_step in n_step_list}
loader = DataLoader(dataset, batch_size=len(dataset) if batch_size is None else batch_size, shuffle=True)
tot_n_steps = max(n_step_list) + 1
with tqdm(total=n_evaluations * len(loader) * tot_n_steps) as progress_bar:
for _ in range(n_evaluations):
for batch in loader:
coord = self.encoder.init_coord(batch.n_nodes.sum(), dtype=dtype, device=self.device)
node_feat = self.encoder.init_node_feat(coord.size(0), dtype=dtype, device=self.device)
for n_step in range(tot_n_steps):
if n_step in n_step_list:
results[n_step]['bce'].append(
self.decoder.bce(coord, batch.edge_index, batch.neg_edge_index).item())
pred_edge_index = self.decoder.decode_adj(coord, n_nodes=batch.n_nodes)[0]
cm, f1 = edge_cm(batch.edge_index, pred_edge_index, batch.n_nodes, True, True)
results[n_step]['cm'].append(cm)
results[n_step]['f1'].append(f1)
progress_bar.set_postfix_str('[step %d] [f1: %.5f]' %
(n_step, results[n_step]['f1'][-1]), refresh=False)
coord, node_feat = self.encoder(
batch.edge_index, coord, node_feat, n_nodes=batch.n_nodes, dtype=dtype)
progress_bar.update(1)
if average_results:
for key_1 in results:
for key_2 in results[key_1]:
results[key_1][key_2] = (np.mean(results[key_1][key_2], 0), np.std(results[key_1][key_2], 0))
return results
@torch.no_grad()
def threshold_tuning(
self,
dataset: Dataset,
n_steps: Optional[int] = None,
thresholds: List[int] = None,
n_evaluations: Optional[int] = 1,
batch_size: Optional[int] = None,
dtype: Optional[torch.dtype] = torch.float64
):
self.to(dtype)
if n_steps is None:
n_steps = self.args.n_max_steps
if thresholds is None:
thresholds = [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98]
f1_dict = {threshold: [] for threshold in thresholds}
loader = DataLoader(dataset, batch_size=len(dataset) if batch_size is None else batch_size, shuffle=True)
with tqdm(total=n_evaluations * len(loader) * len(thresholds)) as progress_bar:
for _ in range(n_evaluations):
for batch in loader:
final_coord = self.encoder(
batch.edge_index.to(self.device), n_steps=n_steps, dtype=dtype)[0]
for threshold in thresholds:
self.decoder.threshold = threshold
pred_edge_index = self.decoder.decode_adj(final_coord)[0]
f1_dict[threshold].append(
edge_cm(batch.edge_index, pred_edge_index, batch.n_nodes, return_f1=True)[1])
progress_bar.update(1)
for threshold in thresholds:
f1_dict[threshold] = np.mean(f1_dict[threshold])
best_threshold = max(f1_dict, key=f1_dict.get)
return best_threshold
class SimulatorEGNCA(pl.LightningModule):
def __init__(
self,
args: Namespace
):
super().__init__()
self.vel2node_feat = nn.Linear(1, args.node_dim)
layers = []
for _ in range(args.n_layers):
layers.append(EGC(
coord_dim=3,
node_dim=args.node_dim,
message_dim=args.message_dim,
act_name=args.act,
is_residual=args.is_residual,
has_attention=args.has_attention,
has_coord_act=args.has_coord_act,
has_vel_norm=args.has_vel_norm,
has_vel=True))
self.egnn = EGNN(layers)
# if decoder is None, a full adjacency will be used
self.decoder = None if args.radius is None else EuclideanDecoder(d1=args.radius, sqrt=True)
# if box_dim is given, the simulation will take place in a box
self.box_dim = args.box_dim
if args.box_dim is not None:
self.box_strength = nn.Parameter(torch.tensor([0.1]))
self.criterion = torch.nn.MSELoss(reduction='mean')
self.args = args
self.save_hyperparameters()
def avoid_borders(
self,
coord: torch.Tensor,
vel: torch.Tensor
):
if self.box_dim is not None:
vel_steer = (coord < - self.box_dim) * self.box_strength - (coord > self.box_dim) * self.box_strength
vel = vel + vel_steer
coord = coord + vel_steer
return coord, vel
def forward(
self,
coord: torch.Tensor,
vel: torch.Tensor,
n_steps: Optional[int] = 1,
node_feat: Optional[torch.Tensor] = None,
n_nodes: Optional[torch.LongTensor] = None
):
assert coord.size() == vel.size() and (coord.ndim == 2 or coord.ndim == 3)
if n_nodes is None:
n_nodes = torch.LongTensor([len(coord)] if coord.ndim == 2 else [coord.size(1)] * len(coord)).to(self.device)
if node_feat is None:
node_feat = self.vel2node_feat(torch.norm(vel, p=2, dim=-1, keepdim=True))
if self.decoder is None:
edge_index = fully_connected_adj(n_nodes, sparse=coord.ndim == 2)
coords, vels = [coord.clone()], [vel.clone()]
for _ in range(n_steps):
if self.decoder is not None:
edge_index = self.decoder.decode_adj(coord, n_nodes)[0]
coord, node_feat, vel = self.egnn(coord, node_feat, edge_index, vel=vel, n_nodes=n_nodes)
coord, vel = self.avoid_borders(coord, vel)
coords.append(coord)
vels.append(vel)
# if len(n_nodes) > 1, as batch is being processed
return (coords, vels) if len(n_nodes) > 1 else (torch.stack(coords).squeeze(), torch.stack(vels).squeeze())
def training_val_step(
self,
batch: List[torch.Tensor],
train: bool
):
# coord_traj_true and vel_traj_true are 4D tensors of shape (batch size, traj length, num nodes, coord dim)
coord_traj_true, vel_traj_true = batch
n_nodes = torch.LongTensor([vel_traj_true.size(2)] * vel_traj_true.size(0)).to(self.device)
in_coord = coord_traj_true[:, 0].reshape(-1, 3) if self.args.sparse_training else coord_traj_true[:, 0]
in_vel = vel_traj_true[:, 0].reshape(-1, 3) if self.args.sparse_training else vel_traj_true[:, 0]
vel_traj_pred = self.forward(in_coord, in_vel, n_steps=vel_traj_true.size(1) - 1, n_nodes=n_nodes)[1]
if self.args.sparse_training:
vel_traj_pred = [v.reshape(-1, vel_traj_true.size(2), vel_traj_true.size(3)) for v in vel_traj_pred]
loss = self.criterion(torch.cat([v.unsqueeze(1) for v in vel_traj_pred], dim=1)[:, 1:], vel_traj_true[:, 1:])
# display training info
print('%s \t %d \t %.5f \t %.6f \t %d' % (
'TR' if train else 'VA', self.current_epoch, loss,
self.trainer.optimizers[0].param_groups[0]['lr'], vel_traj_true.size(1)))
return loss
def training_step(
self,
batch: List[torch.Tensor],
batch_idx: int
):
loss = self.training_val_step(batch, train=True)
self.log('train_loss', loss, prog_bar=True, on_step=True, on_epoch=True, batch_size=len(batch[0]))
return loss
def validation_step(
self,
batch: List[torch.Tensor],
batch_idx: int
):
loss = self.training_val_step(batch, train=False)
self.log('val_loss', loss, prog_bar=True, on_step=True, on_epoch=True, batch_size=len(batch[0]))
return loss
def on_train_epoch_start(self):
old_seq_len = self.trainer.train_dataloader.dataset.datasets.dataset.seq_len
new_seq_len = list_scheduler_step(self.args.seq_len_sch, self.current_epoch)
if old_seq_len != new_seq_len:
self.trainer.train_dataloader.dataset.datasets.dataset.seq_len = new_seq_len
print('Training with sequences of length %d..' % new_seq_len)
def configure_optimizers(self):
optimizer = torch.optim.Adam([
{'params': self.parameters(), 'lr': self.args.lr,
'betas': (self.args.b1, self.args.b2), 'weight_decay': self.args.wd},
])
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer,
factor=self.args.factor_sch,
patience=self.args.patience_sch,
min_lr=1e-5,
verbose=True
)
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'monitor': 'val_loss_epoch'}