-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathindex.html
1021 lines (913 loc) · 36.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="author" content="Stella Liao" />
<title>Crime Prediction in Manhattan, NYC</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/simplex.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<script src="site_libs/kePrint-0.0.1/kePrint.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 41px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 46px;
margin-top: -46px;
}
.section h2 {
padding-top: 46px;
margin-top: -46px;
}
.section h3 {
padding-top: 46px;
margin-top: -46px;
}
.section h4 {
padding-top: 46px;
margin-top: -46px;
}
.section h5 {
padding-top: 46px;
margin-top: -46px;
}
.section h6 {
padding-top: 46px;
margin-top: -46px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">R Data Science Final Project</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Crime Prediction in Manhattan, NYC</h1>
<h3 class="subtitle">Random Forest Classification for Larceny, Harassment and Assault</h3>
<h4 class="author">Stella Liao</h4>
</div>
<div id="introduction" class="section level1">
<h1>Introduction</h1>
<p>Crime is a social issue, like a disease, which tends to spread as spatial clusters. We are always seeking for ways to minimize and prevent the occurrence of crime. Imagine if we could predict the probability of where and when crime occurs, our police could deploy the law enforcement to potentially dangerous areas more efficiently. And usually, we may regard the occurrence of crime as random and use behavioral and social methods to study it. However, with the development of data analysis and technology, we could use some quantitative ways to analyze it.</p>
<p>There is one program named PredPol, conducted by researchers from the University of California, Los Angeles (UCLA). They collected about 13 billion crime cases in 80 years and just used two variables, ‘when’ and ‘where’ to build models to predict where a crime could happen during each day, which is amazing and shows us the power of the environment influencing human’s choice. And the paper written by Dr. Irina Matijosaitiene revealed the effect of land uses on crime type classification and prediction.</p>
<p>So, in this project, I’d like to use visualization at first to give an intuitive feel about the relationship between the occurrence of crime with ‘when’ and ‘where’. And then I will build classification models for different crime types by using ‘when’ and ‘where’ as features input in my models.</p>
</div>
<div id="materials-and-methods" class="section level1">
<h1>Materials and methods</h1>
<p>I will use the crime data from 2015-2017 in Manhattan, New York City to build classification models to classify the top three crime types occurred in this study area, which are larceny, harassment and assault. And the main factors input as features in the models are “time” and “location”, to be specific, “time” refers to exact time and day of week, and “location” refers to land use.</p>
<ul>
<li>Data Sources
<ul>
<li><a href="https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i">NYPD Complaint Data</a>, a CSV file recording all crime occurance in New York City from 2006-2017</li>
<li><a href="https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page">Primary Land Use Tax Lot Output(PLUTO)</a>, a shapfile containing land cover information of New York City</li>
</ul></li>
<li>Relationships between crime types with time and location
<ul>
<li>Time Series Analysis</li>
<li>Effects of Land Uses on Crime Types</li>
</ul></li>
<li>Random Forest Classification Model
<ul>
<li>Training, validation and test data sets</li>
<li>Feature Engineering</li>
<li>Modeling</li>
<li>Parameter Tuning</li>
<li>Evaluation</li>
</ul></li>
</ul>
<div id="load-all-required-packages" class="section level2">
<h2>Load all required packages</h2>
<pre class="r"><code>library(dplyr)
library(stringr)
library(tidyr)
library(readr)
library(lubridate)
library(sp)
library(sf)
library(ggplot2)
library(knitr)
library(kableExtra) #for table styling
library(fastDummies) #get the dummy variables
library(ranger)#random forest model
library(randomForest) #random forest model
knitr::opts_chunk$set(cache=TRUE,cache.lazy = FALSE) # cache the results for quick compiling</code></pre>
</div>
<div id="download-and-clean-all-required-data" class="section level2">
<h2>Download and clean all required data</h2>
<div id="crime-data-set" class="section level3">
<h3>Crime Data Set</h3>
<p>This code chunk is used to download and clean the crime data.</p>
<p>In <code>nypd</code> dataset, the granularity of crime classification into multiple crime sub-types is very small for this project, for example, ‘assault’ is classified as ‘assault 1’, ‘assault 2’, ‘assault peace officer’, etc. As the very small granularity of crimes is out of the research goal, and it does not focus on the smaller sub-types of crime (for instance, ‘larceny in chain stores’, ‘larceny in boutiques’, ‘larceny in clothing stores’, etc.), the project has aggregated crime sub-types into larger groups, such as ‘larceny’, ‘harassment’, ‘assault’, ‘burglary’, etc., using only crime data for 2015–2017.</p>
<p>In crime analysis, especially crime in terms of urban planning, data from the recent 2-3 years is the most commonly used.</p>
<pre class="r"><code>#read the raw data
#It may takes a long time to run due to the large size of the raw dataset
crime_file = "nypd.csv"
crime_url = "https://data.cityofnewyork.us/api/views/qgea-i56i/rows.csv?accessType=DOWNLOAD"
download.file(crime_url,crime_file)
nypd <-read.csv(crime_file,stringsAsFactors = FALSE)
#clean and tidy crime data
#classify exact time into different time ranges
time_range<- data.frame(id=c(0:24),
range= c("00-01","01-02","02-03","03-04","04-05","05-06","06-07","07-08",
"08-09","09-10","10-11","11-12","12-13","13-14","14-15","15-16",
"16-17","17-18","18-19","19-20","20-21","21-22","22-23","23-24","00-01"))
#exract the relative information into crime_MAN dataframe
crime_MAN <- nypd %>%
drop_na(Longitude)%>% #remove NA value
drop_na(Latitude)%>%
drop_na(CMPLNT_FR_DT)%>%
drop_na(CMPLNT_FR_TM)%>%
st_as_sf(coords=c("Longitude","Latitude"),crs = 4326)%>% #add geo-referenced information
rename( #rename some column names to operate easily
CrimeID = CMPLNT_NUM,
CrimeType = PD_DESC)%>%
mutate(Date = mdy(CMPLNT_FR_DT),#change data column into DATE type
DayofWeek = wday(Date,label = TRUE,abbr = FALSE),
Day=wday(Date), #get the information about day of week
Time = hour(hms(CMPLNT_FR_TM)))%>% #get the hour of time
mutate(TimeRange = time_range$range[match(.$Time, time_range$id)])%>% #add a new column storing time ranges
filter(BORO_NM == "MANHATTAN"& #limit the study area
Date >= ymd(20150101)& #limit the study periods
Date <= ymd(20171231))%>%
select("CrimeType","DayofWeek","TimeRange","Time","Day") #select the relative columns
#combine sub-classes of crime types into big classes
crime_type <- c("LARCENY","ASSAULT","HARASSMENT,SUBD","THEFT","ADMINISTRATIVE CODE","HOMICIDE","INTOXICATED","LOITERING","OTHERSTATE LAW","OFFENSES","CRIMINAL MISCHIEF")
for(i in 1:length(crime_type)){
crime_MAN$CrimeType[grep(crime_type[i],crime_MAN$CrimeType)] <- crime_type[i]
}
crime_MAN$CrimeType[crime_MAN$CrimeType == "HARASSMENT,SUBD"] <- "HARASSMENT"
knitr::opts_chunk$set(cache = TRUE, warning = FALSE,
message = FALSE, cache.lazy = FALSE)</code></pre>
</div>
<div id="land-use-data-set" class="section level3">
<h3>Land Use Data Set</h3>
<p>This code chunk is used to download and clean the land use data.</p>
<p>In <code>pluto</code> dataset, there are 84 variables, such as a unique ID, land use code and title (such as ‘One & Two Family Buildings’, ‘Multi-Family Walk-Up Buildings’, etc.), lot shape, area, tax code, address, as well as many other variables for each lot. And for this research, the interest is only in the geo-spatial and land use information for all lots in Manhattan. Therefore, the number of variables were reduced; leaving the following variables for further research: unique ID, land use ID and geo-spatial attributes.</p>
<p>For displaying, each land use ID is with the corresponding name, for instance 01—one & two family buildings, 02—multi-family walk-up buildings, etc.</p>
<pre class="r"><code>#please download and unzip the landuse dataset if you do not have
landUse_url = "https://www1.nyc.gov/assets/planning/download/zip/data-maps/open-data/nyc_mappluto_19v1_shp.zip"
landUse_file = "pluto.zip"
download.file(landUse_url,destfile = landUse_file)
unzip(landUse_file, exdir = "pluto")
#read the raw data
mapluto <-st_read("pluto/MapPLUTO.shp")
#to add the name of each landuse type
landUse_type <- data.frame(id=c(1:11),type = c("One & Two Family Buildings",
"Multi-Family Walk-Up Buildings",
"Multi-Family Elevator Buildings",
"Mixed Residential & Commercial Buildings",
"Commercial & Office Buildings",
"Industrial & Manufacturing",
"Transportation & Utility",
"Public Facilities & Institutions",
"Open Space and Outdoor Recreation",
"Parking Facilities",
"Vacant Land"))
#exract the relative information
landUse_MAN <- mapluto %>%
st_transform(st_crs(crime_MAN))%>% #make sure the same coordinate system
drop_na(LandUse)%>%
filter(Borough == "MN")%>% #limit the study area
select("Lot","LandUse")%>%
rename(LandUseID = LandUse)%>% #because the raw dataset just stored landuse id in "LandUse" Column
mutate(LandUseID = as.integer(LandUseID))%>%
mutate(LandUse = landUse_type$type[match(.$LandUseID, landUse_type$id)]) #add a new column storing land cover names
knitr::opts_chunk$set(cache = TRUE, warning = FALSE,
message = FALSE, cache.lazy = FALSE)</code></pre>
</div>
</div>
<div id="which-crime-types-are-most-frequently-happen" class="section level2">
<h2>Which Crime types are most frequently happen?</h2>
<p>This code chunk is used to get the table describing the top 10 occurred crime types, which is presented in <code>Result</code> part.</p>
<pre class="r"><code>top10_Crime_MAN <- crime_MAN %>%
group_by(CrimeType)%>%
summarize(Amount = n())%>% #calculate the number of each crime type occurred totally
mutate(Percent = Amount/sum(Amount)*100)%>% #calculate the percent of each crime type
arrange(desc(Amount))%>% #sort ranging from the highest number to lowest one
rename("Percent(%)"=Percent,
"Amount(Cases)"=Amount)%>%# rename for displaying
st_set_geometry(NULL) #no need to have geometry information</code></pre>
</div>
<div id="time-series-analysis" class="section level2">
<h2>Time Series Analysis</h2>
<p>This code chunk is to analyze time preference of top 3 commited crime types and the graphes are presented in <code>Result</code> part.</p>
<pre class="r"><code>top3 <- data.frame(id=c(1:3),type = c("LARCENY","HARASSMENT","ASSAULT"))
#get the numbers of cases happened of each crime type in different time ranges
time_top3 <- crime_MAN %>%
st_set_geometry(NULL)%>%
filter(CrimeType %in% top3$type)%>%
group_by(TimeRange,CrimeType)%>%
summarize(amount=n())
#get the numbers of cases happened of each crime type in different days of week
dw_top3 <- crime_MAN %>%
st_set_geometry(NULL)%>%
filter(CrimeType %in% top3$type)%>%
drop_na(DayofWeek)%>%
group_by(DayofWeek,CrimeType)%>%
summarize(amount=n())</code></pre>
</div>
<div id="effects-of-land-uses-on-crime-types" class="section level2">
<h2>Effects of Land Uses on Crime Types</h2>
<p>This code chunk is to analyze land uses preference of top 3 commited crime types and the graphes are presented in <code>Result</code> part.</p>
<pre class="r"><code>#add landuse information into the crime dataset
top3_Crime_LandUse_MAN <- crime_MAN %>%
filter(CrimeType %in% top3$type)%>%
st_join(landUse_MAN,join = st_nearest_feature,left = FALSE)
top3_Crime_LandUse_MAN$CrimeTypeID = top3$id[match(top3_Crime_LandUse_MAN$CrimeType, top3$type)]
#get the numbers of cases happened of each crime type on different land covers
ld_top3 <- top3_Crime_LandUse_MAN %>%
group_by(CrimeType,LandUse)%>%
summarize(amount=n())</code></pre>
</div>
<div id="random-forest-classification-model" class="section level2">
<h2>Random Forest Classification Model</h2>
<div id="training-validation-and-test-data-sets" class="section level3">
<h3>Training, Validation and Test Data sets</h3>
<p>Before building models, one important thing is feature engineering. And I used <code>dummy_cols()</code>function to make features into dummy variables, which is a good way to make qualitative data into quantitative data for quantifing. And then, I splited the data into three parts, training data for traning models, validation data for tuning parameters of models and test data for testing how models work well.</p>
<pre class="r"><code>CL <- top3_Crime_LandUse_MAN %>%
st_set_geometry(NULL)%>%
select("CrimeTypeID","Time","LandUseID")
CL.dummy <- dummy_cols(CL,select_columns = c("Time","LandUseID"))%>%
subset(select = -c(Time,LandUseID))
#split into train and test data
set.seed(42)
id <- sample(nrow(CL.dummy), 0.8 * nrow(CL.dummy))
train <- CL.dummy[id, ]
CL.test <- CL.dummy[-id, ]
#split train data into train data and validation data
set.seed(42)
train2 <- train[-sample( which(train$CrimeTypeID == 1 ),67000), ]
id2 <- sample(nrow(train2), 0.8 * nrow(train2))
CL.train <- train2[id2, ]
CL.validation <- train2[-id2, ] </code></pre>
</div>
<div id="modeling" class="section level3">
<h3>Modeling</h3>
<p>This code chunk is to build the basic random forest model using default parameters and shows the confusion matrix where the row and column names are “assault, harassment and larceny” from top to bottom and from right to light; and rows represent predicting values and columns represent true values.</p>
<pre class="r"><code>set.seed(42)
CL.train$CrimeTypeID <- as.factor(CL.train$CrimeTypeID)
CL.test$CrimeTypeID <- as.factor(CL.test$CrimeTypeID)
rf_model <- ranger(CrimeTypeID ~ .,data=CL.train)
pred <- predict(rf_model, data = CL.test)
CM_RF <- table(CL.test$CrimeTypeID,pred$predictions)%>%
kable()%>%
kable_styling(bootstrap_options = "striped", full_width = F)
CM_RF</code></pre>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
1
</th>
<th style="text-align:right;">
2
</th>
<th style="text-align:right;">
3
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
14436
</td>
<td style="text-align:right;">
6496
</td>
<td style="text-align:right;">
4301
</td>
</tr>
<tr>
<td style="text-align:right;">
3009
</td>
<td style="text-align:right;">
3435
</td>
<td style="text-align:right;">
1445
</td>
</tr>
<tr>
<td style="text-align:right;">
2236
</td>
<td style="text-align:right;">
2152
</td>
<td style="text-align:right;">
2805
</td>
</tr>
</tbody>
</table>
</div>
<div id="parameter-tuning" class="section level3">
<h3>Parameter Tuning</h3>
<div id="mtry" class="section level4">
<h4>Mtry</h4>
<p>Mtry refers to max feature in random forest, which is the number of features to consider when looking for the best split. And this table shows the top3 most least errer values with their max features. According to the table, <code>mtry=7</code> would be better for the model because its errer value is smallest.</p>
<pre class="r"><code>CL.validation$CrimeTypeID <- as.factor(CL.validation$CrimeTypeID)
n= length(names(CL.validation))
errTable <-c()
for (i in 1:(n-1)){
mtry_fit <- randomForest(CrimeTypeID~.,CL.validation,mtry=i)
err = mean(mtry_fit$err.rate)
errTable <- rbind(errTable,c(i,err))
}
colnames(errTable) <- c("mtry","err")
errTable2 <- as.data.frame(errTable)
errTable <- errTable2%>% arrange(err)
kable(errTable[1:3,])%>%
kable_styling(bootstrap_options = "striped", full_width = F)</code></pre>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
mtry
</th>
<th style="text-align:right;">
err
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
7
</td>
<td style="text-align:right;">
0.5403955
</td>
</tr>
<tr>
<td style="text-align:right;">
5
</td>
<td style="text-align:right;">
0.5443437
</td>
</tr>
<tr>
<td style="text-align:right;">
6
</td>
<td style="text-align:right;">
0.5443852
</td>
</tr>
</tbody>
</table>
</div>
<div id="num.tree" class="section level4">
<h4>Num.tree</h4>
<p>Num.tree refers to the mumber of trees in the forest.</p>
<pre class="r"><code> ntree_fit<-randomForest(CrimeTypeID~.,CL.validation,mtry=7,ntree=1000)
plot(ntree_fit)</code></pre>
<p><img src="index_files/figure-html/parameter_tuning2-1.png" width="672" /></p>
</div>
</div>
</div>
</div>
<div id="results" class="section level1">
<h1>Results</h1>
<div id="top-ten-most-committed-crime-types" class="section level2">
<h2>Top ten most committed crime types</h2>
<p>From 2015-2017, there are 342640 cases of crime occurred. The largest crime in Manhattan with 126413 registered cases by police, resulting in 36.89% of all crimes. Larceny is followed by harassment, having 38829 registered cases, resulting in 11.33% of all crimes. Assault was the third largest crime in Manhattan (after larceny and harassment) with 36333 registered cases, resulting in 10.6% of all crimes.</p>
<p>According to the criminal law and the Penal Code, ‘larceny’ is ‘the unlawful taking and carrying away of someone else’s property without the consent of the owner and with the intent to permanently deprive the owner of the property’. ‘Criminal harassment’ entails ‘intentionally targeting someone else with behavior that is meant to alarm, annoy, torment or terrorize them’.’Assault’ is ‘a physical attack on someone’. Under New York Penal Law, ‘assault’ is when a person <br>i) has an intent to cause physical injury to another person, <br>ii) or he recklessly causes physical injury to another person, <br>iii) or with criminal negligence, he causes physical injury to another person by means of a deadly weapon or a dangerous instrument.</p>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
CrimeType
</th>
<th style="text-align:right;">
Amount(Cases)
</th>
<th style="text-align:right;">
Percent(%)
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;font-weight: bold;color: white !important;background-color: #D7261E !important;">
LARCENY
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
126413
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
36.89
</td>
</tr>
<tr>
<td style="text-align:left;font-weight: bold;color: white !important;background-color: #D7261E !important;">
HARASSMENT
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
38829
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
11.33
</td>
</tr>
<tr>
<td style="text-align:left;font-weight: bold;color: white !important;background-color: #D7261E !important;">
ASSAULT
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
36333
</td>
<td style="text-align:right;font-weight: bold;color: white !important;background-color: #D7261E !important;">
10.60
</td>
</tr>
<tr>
<td style="text-align:left;">
CRIMINAL MISCHIEF
</td>
<td style="text-align:right;">
17936
</td>
<td style="text-align:right;">
5.23
</td>
</tr>
<tr>
<td style="text-align:left;">
AGGRAVATED HARASSMENT 2
</td>
<td style="text-align:right;">
12368
</td>
<td style="text-align:right;">
3.61
</td>
</tr>
<tr>
<td style="text-align:left;">
MARIJUANA, POSSESSION 4 & 5
</td>
<td style="text-align:right;">
9015
</td>
<td style="text-align:right;">
2.63
</td>
</tr>
<tr>
<td style="text-align:left;">
CONTROLLED SUBSTANCE, POSSESSI
</td>
<td style="text-align:right;">
6618
</td>
<td style="text-align:right;">
1.93
</td>
</tr>
<tr>
<td style="text-align:left;">
MISCHIEF, CRIMINAL 4, OF MOTOR
</td>
<td style="text-align:right;">
6315
</td>
<td style="text-align:right;">
1.84
</td>
</tr>
<tr>
<td style="text-align:left;">
FRAUD,UNCLASSIFIED-FELONY
</td>
<td style="text-align:right;">
4268
</td>
<td style="text-align:right;">
1.25
</td>
</tr>
<tr>
<td style="text-align:left;">
FORGERY,ETC.,UNCLASSIFIED-FELO
</td>
<td style="text-align:right;">
4013
</td>
<td style="text-align:right;">
1.17
</td>
</tr>
</tbody>
</table>
</div>
<div id="the-preference-on-time-of-top-three-committed-crime-types" class="section level2">
<h2>The Preference on Time of Top Three Committed Crime Types</h2>
<p>We could see assault is more likely to happen in around 3pm. And after 3pm, the amount of assault occurred remains unchanged, but the amount of harassment occurred starts to decrease until 5am in next day. As for larceny, the most interesting part is from 12pm-5pm. After reaching the peak at 12pm, the amount starts to decrease until 1pm and increases between 2 to 3pm; and then it decreases in 4pm a little bit and increases until 5pm. After 5pm, the amount of larceny occurred drops rapidly until 5am in next day. And from 5am-6am, criminals decide to have a rest and the amount of the three crime types are least.</p>
<p><img src="index_files/figure-html/unnamed-chunk-2-1.png" width="672" /></p>
</div>
<div id="the-preference-on-day-of-week-of-top-three-committed-crime-types" class="section level2">
<h2>The Preference on Day of Week of Top Three Committed Crime Types</h2>
<p>We could see the amount of harassment occurred changes slightly. And assault would be more likely to happen on weekends, while larceny tend to occur on weekends.</p>
<p><img src="index_files/figure-html/unnamed-chunk-3-1.png" width="672" /></p>
</div>
<div id="the-preference-on-land-uses-of-top-three-committed-crime-types" class="section level2">
<h2>The Preference on Land Uses of Top Three Committed Crime Types</h2>
<p>We could see the three crime types have similar preferences on land uses. They are more likely to occur in mixed residential & commercial buildings(land use code 3,LUC3), commercial & office buildings(LUC1) and public facilities & institutions(LUC9). But comparing with the amounts in different land use type, larceny tend to happen in former two land use types rather than the last one.</p>
<p><img src="index_files/figure-html/unnamed-chunk-4-1.png" width="672" /></p>
</div>
<div id="random-forest-classification-model-1" class="section level2">
<h2>Random Forest Classification Model</h2>
<p>This code is to build the random forest model with parameters tuned. And the table shows the confusion matrix where the row and column names are “assault, harassment and larceny” from top to bottom and from right to light; and rows represent predicting values and columns represent true values.</p>
<pre class="r"><code>RF.CL <- ranger(CrimeTypeID ~ .,data=CL.train,num.trees = 500,mtry=7)
pred.CL <- predict(RF.CL, data = CL.test)
CM_RF1 <- table(CL.test$CrimeTypeID,pred.CL$predictions)%>%
kable()%>%
kable_styling(bootstrap_options = "striped", full_width = F)
CM_RF1</code></pre>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
1
</th>
<th style="text-align:right;">
2
</th>
<th style="text-align:right;">
3
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
14319
</td>
<td style="text-align:right;">
6356
</td>
<td style="text-align:right;">
4558
</td>
</tr>
<tr>
<td style="text-align:right;">
2982
</td>
<td style="text-align:right;">
3331
</td>
<td style="text-align:right;">
1576
</td>
</tr>
<tr>
<td style="text-align:right;">
2188
</td>
<td style="text-align:right;">
2028
</td>
<td style="text-align:right;">
2977
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="conclusions" class="section level1">
<h1>Conclusions</h1>
<p>The final classification result was not good enough, there might two reasons. The first one is imbalanced classes. In fact, when removing all records of larceny and just classifying harassment and assault crime types, the result showed about 70% accuracy. So, for the further analysis, I’d like to find some other ways to reduce the effect of imbalanced classes</p>
<p>The second reason is that there is much work about feature engineering. Firstly, as for exact time, this project just made time range based on hour and ignored the effect of minutes. And actually, the minutes ranges would be a good feature to the classification. Secondly, the pattern in different time range and different days of week of the three crime types are not distinct enough for classification, in other words, for the further analysis, I’d like to find some new features to represent the effect of time on different crime types. According to the figures abour the preferences, I’d like introduce some new features, such as 5am proximity, 3pm proximity and weekend proximity, etc.</p>
<p>And I’d like to try some more efficient methods for the further analysis, such as other classification models and Bayesian optimization for parameters tuning.</p>
</div>
<div id="references" class="section level1">
<h1>References</h1>
<ol style="list-style-type: decimal">
<li><a href=http://www.predpol.com/how-predictivepolicing-works/>Predpol. How Predictive PolicingWorks. 2018.</a><br></li>
<li><a href="https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i">NYPD Complaint Data</a><br></li>
<li><a href="https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page">Primary Land Use Tax Lot Output(PLUTO)</a><br></li>
<li>Matijosaitiene, I.; Zhao, P.; Jaume, S.; Gilkey Jr, J.W. Prediction of Hourly Effect of Land Use on Crime. ISPRS Int. J. Geo-Inf. 2019, 8, 16.<br></li>
<li>Almanie, Tahani; Mirza, Rsha.; Lor, Elizabeth. Crime Prediction Based On Crime Types And Using Spatial And Temporal Criminal Hotspots. IJDKP Int. J. Data Mining & Knowledge Managemrnt Process. Vol.5, No.4, July 2015</li>
</ol>
</div>
<!-- give the footer some space -->
<br/>
<br/>
<footer id="site-footer">
<div id="footer1">
This website is a project for Adam Wilson's <a href="https://wilsonlab.io/GEO511"><i> Spatial Data Science (GEO511) </i></a>Course at the University at Buffalo
</div>
<div id="footer2">
<a rel="license" property="http://creativecommons.org/ns#license"
href="http://creativecommons.org/licenses/by/4.0/" ><img src="img/cc-by.svg" alt="cc-by"/></a>
</div>
</footer>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options