-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXX-layers.qmd
577 lines (483 loc) · 20.2 KB
/
XX-layers.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
```{r}
#| echo: false
source("code/before_script.R")
```
# Layers {#sec-layers}
<!-- make the order of the table to be consistent with the rest of the chapter! -->
```{r}
#| echo: false
layers_basic_df = tibble::tribble(
~Function, ~Element, ~Geometry,
"tm_polygons()", "polygons (borders and fill)", "polygons",
"tm_symbols()", "symbols", "points, polygons, and lines",
"tm_lines()", "lines", "lines",
"tm_raster()", "raster", "raster",
"tm_text()", "text", "points, polygons, and lines",
"tm_basemap()", "tile" , "",
"tm_tiles()", "tile", ""
)
layers_extended_df = tibble::tribble(
~Function, ~Element, ~Geometry,
"tm_borders()", "polygons (borders)", "polygons",
"tm_fill()", "polygons (fill)", "polygons",
"tm_bubbles()", "bubbles", "points, polygons, and lines",
"tm_dots()", "dots", "points, polygons, and lines",
"tm_markers()", "marker symbols", "points, polygons, and lines",
"tm_square()", "squares", "points, polygons, and lines",
"tm_iso()", "lines with text labels", "lines",
"tm_rgb()/tm_rgba()", "raster (RGB image)", "raster"
)
layers_df = rbind(layers_basic_df,
layers_extended_df)
```
@tbl-layers-table
```{r}
#| label: tbl-layers-table
#| echo: false
#| warning: false
#| message: false
tinytable::tt(layers_df, caption = "Map layers.") |>
tinytable::group_tt(i = list("Basic functions" = 1, "Derived functions" = 8)) |>
tinytable::style_tt(i = c(1, 9), color = "white", background = "gray", bold = TRUE) |>
tinytable::style_tt(j = 1, monospace = TRUE)
# library(magrittr)
# library(kableExtra)
# options(kableExtra.html.bsTable = TRUE)
# knitr::kable(layers_df,
# caption = "Map layers.",
# caption.short = "Map layers.",
# booktabs = TRUE) |>
# kableExtra::kable_styling("striped",
# latex_options = "striped",
# full_width = FALSE) |>
# kableExtra::column_spec(1, bold = TRUE, monospace = TRUE) |>
# kableExtra::pack_rows("Basic functions", 1, 7) |>
# kableExtra::pack_rows("Derived functions", 8, 15)
```
<!--JN: Idea - add available aesthetics to the above table-->
<!--JN: Idea - also add a simple viz showing different kind of layers here (visual summary)-->
In this chapter, we focus on what map layers are available in **tmap** and how they differ.
@sec-visual-variables, on the other hand, is all about how to present information given in variables using colors, sizes, and shapes.
<!-- ... -->
<!-- maybe also we should add info about packages that tmap accepts (e.g., sf, sp, raster, stars, terra?) -->
## Polygons {#sec-polygons}
<!-- intro -->
```{r}
#| warning: false
#| message: false
library(tmap)
library(sf)
ei_borders = read_sf("data/easter_island/ei_border.gpkg")
```
The main function of visualizing polygons is `tm_polygons()`.
By default, it plots areas of polygons in light gray (`gray85`) and polygons borders in slightly dark gray (`gray25`).
<!-- https://github.com/r-tmap/tmap/blob/master/R/tmap_options.R -->
```{r}
#| eval: false
tm_shape(ei_borders) +
tm_polygons()
```
Both, colors of areas (polygons' fillings) and colors of borders can be modified using the `fill` and `col` arguments (@fig-tmpolygonsder-1).
```{r}
#| label: tmpolygonsder1
#| eval: false
tm_shape(ei_borders) +
tm_polygons(fill = "lightblue", col = "black", lwd = 0.5, lty = "dashed")
```
In fact, `tm_polygons()` is a combination of two separate functions: `tm_fill()` and `tm_borders()`.
The `tm_fill()` function fills polygons with a fixed color or a color palette representing a selected variable (@fig-tmpolygonsder-2).
```{r}
#| label: tmpolygonsder2
#| eval: false
tm_shape(ei_borders) +
tm_fill(fill = "lightblue")
```
The `tm_borders()` function draws the borders of the polygons only (@fig-tmpolygonsder-3).
It allows you to change the colors of borders, their widths, or the lines type.
```{r}
#| label: tmpolygonsder3
#| eval: false
tm_shape(ei_borders) +
tm_borders(col = "black", lwd = 0.5, lty = "dashed")
```
```{r}
#| label: fig-tmpolygonsder
#| warning: false
#| echo: false
#| layout-nrow: 1
#| fig-cap: "Example of a map created using:"
#| fig-subcap:
#| - "tm_polygons()"
#| - "tm_fill()"
#| - "tm_borders()"
#| #fig-asp: 0.4
<<tmpolygonsder1>>
<<tmpolygonsder2>>
<<tmpolygonsder3>>
```
More information on colors and how they can be applied and modified is explained in detail in @sec-colors.
## Symbols {#sec-symbols}
```{r}
ei_points = read_sf("data/easter_island/ei_points.gpkg")
volcanos = subset(ei_points, type == "volcano")
```
Symbols are a very flexible layer type.
They are usually used to represent point data but can also be used for lines and polygons.
In the latter cases, they are located in the centroid coordinates of each feature.
Their flexibility is also related to the ways symbols can be visualized -- it is possible to show values of a given variable by colors of symbols, their sizes, or shapes (more about that is explained in @sec-visual-variables).
The `tm_symbols()` is the main function in **tmap**, allowing to use and modify symbol elements (@fig-tmsymbols1).
By default, this function draws a gray circle symbol with a black border for each element of an input feature.
```{r}
#| label: fig-tmsymbols1
#| warning: false
#| echo: false
#| asp: 0.25
#| fig-cap: A map showing the default tmap symbols.
tm_shape(volcanos) +
tm_symbols()
```
In the above example, each symbol is related to one feature (row) in the `volcanos` object.
However, in a case when we provide multi-element features (such as MULTIPOINT; @sec-vector-data-model), each multi-element object is first split into a number of single-element features and then plotted.
The `tm_symbols()` is a very flexible function with a large number of arguments.
While this allows adjusting its results to almost any need, it also makes this function complicated.
Therefore, four additional layers are implemented in **tmap**: `tm_squares()`, `tm_bubbles()`, `tm_dots()`, `tm_markers()`.
All of them use `tm_symbols()`, but with different default values.
`tm_squares()` uses square symbols (`shape = 22`) instead of circles (`shapes = 21`) (@fig-tmsymbols2-1).
<!--scale is 4/3 instead of 1-->
```{r}
#| label: tmsymbols21
#| eval: false
tm_shape(volcanos) +
tm_squares()
```
<!-- JN: what is the main difference between symbols and bubbles?? -->
(@fig-tmsymbols2-2)
<!--scale is 4/3 instead of 1-->
```{r}
#| label: tmsymbols22
#| eval: false
tm_shape(volcanos) +
tm_bubbles()
```
The main role of `tm_dots()` is to present many locations at the same time.
To do this, this layer has a small size value (`0.02`) at the default (@fig-tmsymbols2-3).
```{r}
#| label: tmsymbols23
#| eval: false
tm_shape(volcanos) +
tm_dots()
```
The last additional layer is `tm_markers()`, which uses a marker icon by default (@fig-tmsymbols2-4).
```{r}
#| label: tmsymbols24
#| eval: false
tm_shape(volcanos) +
tm_markers()
```
```{r}
#| label: fig-tmsymbols2
#| warning: false
#| echo: false
#| layout-nrow: 2
#| fig-cap: "Maps showing default visualizations using various types of symbols."
#| fig-subcap:
#| - "tm_squares()"
#| - "tm_bubbles()"
#| - "tm_dots()"
#| - "tm_markers()"
#| #fig-asp: 0.69
<<tmsymbols21>>
<<tmsymbols22>>
<<tmsymbols23>>
<<tmsymbols24>>
```
## Lines {#sec-lines}
```{r}
ei_roads = read_sf("data/easter_island/ei_roads.gpkg")
```
The `tm_lines()` function allows the visualization of different types of line data (@fig-tmlines).
```{r}
#| label: fig-tmlines
#| fig-cap: "Example of a map created with tm_lines()."
tm_shape(ei_roads) +
tm_lines()
```
Lines can be presented using different colors, widths, or types (@sec-visual-variables).
This allows to show a hierarchy (for example, increased line widths for higher capacity roads) or distinguish between types of objects (for example, blue rivers comparing to gray roads).
## Text {#sec-text}
<!-- tm_labels? -->
Text labels are often an integral part of many maps.
They can serve several functions, from naming features, indicating relations between them, or representing a given variable's values.
The main function for creating text labels is `tm_text()`, which adds a label to each spatial feature (@fig-tmtext).
```{r}
#| label: fig-tmtext
#| fig-cap: "Example of a map created with tm_text()."
#| fig-asp: 0.35
tm_shape(volcanos) +
tm_text(text = "name", size = "elevation")
```
We can adjust sizes (`size`; @sec-sizes), colors (`col`), font faces (`fontface`), and background colors (`bgcol`) of labels either by providing a single value or a name of a data variable.
Text labels can be further modified with the `opt_tm_text()` function provided to the `options` argument.
It includes a set of arguments that allow to adjustment of the text labels' appearance, such as `remove_overlap,` `along_lines,` and `shadow.`
<!-- ref to the text section?? -->
```{r}
#| echo: false
tm_shape(ei_roads) +
tm_lines(lwd = "strokelwd") +
tm_text("name", size = "strokelwd", col = "red",
options = opt_tm_text(remove_overlap = TRUE, shadow = TRUE))
```
<!-- to update -->
Text labels can be added to spatial (multi-)points, (multi-)lines, and (multi-)polygons, and each of the cases is quite different.
The simplest case is for POINT data, for which each text label will be located precisely in the coordinates of the given points (@fig-tmtext).
However, how to add text labels to multipoints, lines, multilines, polygons, or multipolygons?
Should each label correspond to one spatial feature, or should every sub-feature have its own label?
Where should the labels be placed for lines or polygons - in the center of a line and centroid of a polygon or somewhat different?
<!-- https://github.com/r-tmap/tmap-book/issues/16 -->
<!-- wait for v4 -->
```{r}
#| echo: false
#| eval: false
metro3 = metro2 |>
dplyr::mutate(g = rep(1:5, 6)) |>
dplyr::group_by(g) |>
dplyr::summarize()
tm_shape(metro3) +
tm_text(text = "g", size = "g") +
tm_layout(legend.outside = TRUE)
```
```{r}
#| warning: false
# x2 = x |>
# dplyr::group_by(region_un) |>
# dplyr::summarise()
# tm_shape(x2) +
# tm_polygons() +
# tm_text("region_un")
```
<!-- add info about text location, e.g. -->
<!-- add relation between text and other layers -->
<!-- point + text -->
<!-- lines + text -->
<!-- polys + text -->
<!-- ask MT -->
Text labels are also often presented together with lines (@sec-lines).
One example is an isopleth -- a line drawn on a map through all points having the same value of a given variable, such as atmospheric pressure or elevation.
Isopleths can be created with the `tm_iso()` function.
```{r}
# to improve
library(stars)
library(terra)
ei_elev = read_stars("data/easter_island/ei_elev.tif")
ei_elev_raster = rast(ei_elev)
elev_isopleths = as.contour(ei_elev_raster)
tm_shape(elev_isopleths) +
tm_iso()
```
```{r}
ei_terrain = terra::terrain(ei_elev_raster, c("slope", "aspect"), unit = "radians")
hs = terra::shade(ei_terrain[[1]]*3, ei_terrain[[2]])
tm_shape(hs) +
tm_grid() +
tm_raster(col.scale = tm_scale(values = gray(0:100 / 100), n = 100),
col.legend = tm_legend_hide()) +
tm_shape(ei_elev) +
tm_raster(col_alpha = 0.25,
col.scale = tm_scale(values = terrain.colors(25)),
col.legend = tm_legend_hide()) +
tm_shape(elev_isopleths) +
tm_lines(col = "white") +
tm_text("level", col = "white")
```
<!-- auto.placement -->
<!-- remove.overlap -->
<!-- xmod -->
<!-- ymod -->
<!-- just -->
<!-- clustering -->
## Raster {#sec-raster-layer}
```{r}
#| message: false
library(stars)
ei_elev = read_stars("data/easter_island/ei_elev.tif")
ei_geomorphons = read_stars("data/easter_island/ei_geomorphons.tif")
```
<!-- Raster data intro -->
Visualization of raster data depends on the raster type (continuous or categorical), its resolution, and the number of layers.
@fig-rasterdown shows two simple examples of continuous and categorical raster visualizations created with `tm_raster().`
This function attempts to recognize the type of a given raster -- when the input raster is continuous then the pretty style is used (@fig-rastertype-1).
<!-- However, the continuous scale (`tm_scale_continuous()`) often better represent phenomena that progressively vary in space -->
```{r}
#| label: rastertype1
#| eval: false
tm_shape(ei_elev) +
tm_raster()
```
On the other hand, when the given raster is categorical, then `tm_raster()` uses `tm_scale_categorical()` automatically (@fig-rastertype-2).
We can also adjust the legend title, used colors, and many more, in a similar fashion as in the previously mentioned layers.
```{r}
#| label: rastertype2
#| eval: false
tm_shape(ei_geomorphons) +
tm_raster()
```
```{r}
#| label: fig-rastertype
#| echo: false
#| message: false
#| layout-nrow: 1
#| fig-cap: Examples of raster maps
#| fig-subcap:
#| - "Continuous raster map"
#| - "Categorical raster map"
<<rastertype1>>
<<rastertype2>>
```
The above examples used a raster with one layer only.
However, rasters can have many layers, either represented by dimensions or attributes.
By default, **tmap** shows all of the layers, where each raster has its own legend.
```{r}
#| results: hide
#| message: false
#| fig-show: hide
raster2 = c(ei_elev, ei_geomorphons)
tm_shape(raster2) +
tm_raster()
```
We can modify their arrangement with `tm_facets()` (@fig-tmrasterml).
```{r}
#| label: fig-tmrasterml
#| message: false
#| fig-cap: A map created from a multilayered raster.
tm_shape(raster2) +
tm_raster() +
tm_facets(ncol = 1) +
tm_layout(panel.labels = c("Elevation", "Geomorphons"))
```
If you want to learn more -- we focus on how to specify and modify facets (also known as small multiples) in @sec-multiples and how to modify map layout in @sec-layout.
```{r}
#to replace later
library(stars)
landsat = read_stars(system.file("raster/landsat.tif", package = "spDataLarge"))
```
The `landsat` object contains four bands (blue, green, red, and near-infrared) of the Landsat 8 image for the area of Zion National Park taken on the 18th of August 2015.
We can plot all of the bands independently or as a combination of three bands.
This combination is known as a color composite image, and we can create such images with the `tm_rgb()` function (@fig-tmrgbs).
Standard composite image (true color composite) uses the visible red, green, and blue bands to represent the data in natural colors.
We can specify which band in `landsat` relates to red (third band), green (second band), and blue (first band) color in `tm_rgb()`.
<!-- to update -->
<!-- Also, by default, this function expects values from 0 to 255; however, our values are in a different scale, with the maximum value of 31961. -->
<!-- Therefore, to create a map, we can set `max.value` to our dataset's maximum value. -->
<!-- The result is a true color composite, with green colors representing forests and other types of vegetation, and yellow color showing bare areas (@fig-tmrgbs-1). -->
```{r}
#| label: tmrgbs1
#| eval: false
tm_shape(landsat) +
tm_rgb(tm_vars(dimvalues = c(3, 2, 1), multivariate = TRUE),
col.scale = tm_scale_rgb(stretch = TRUE))
```
True color images are straightforward to interpret and understand, but they make subtle differences in features challenging to recognize.
However, nothing stops us from using the above tools to integrate different bands to create so called false color composites.
Various band combinations emphasize some spatial characteristics, such as water, agriculture, etc., and allow us to visualize wavelengths that our eyes can not see.
<!-- add some reference?? -->
@fig-tmrgbs-2 shows a composite of near-infrared, red, and green bands, highlighting vegetation with a bright red color.
```{r}
#| label: tmrgbs2
#| eval: false
tm_shape(landsat) +
tm_rgb(tm_vars(dimvalues = c(4, 3, 2), multivariate = TRUE),
col.scale = tm_scale_rgb(stretch = TRUE))
```
```{r}
#| label: fig-tmrgbs
#| message: false
#| echo: false
#| layout-nrow: 1
#| fig-cap: 'Two color composite images'
#| fig-subcap:
#| - 'True color composite image'
#| - 'False color composite image'
<<tmrgbs1>>
<<tmrgbs2>>
```
<!-- raster.warp -->
<!-- raster margins -->
## Tile {#sec-tile-layer}
<!-- A tile layer is .. -->
<!-- Tile layers (or just tines) are usually stored as prerendered raster tiles or as vector tiles on online servers. -->
Tile layers can be used for two purposes: either as a basemap or an overlay layer.
By default, three basemaps are used in the interactive mode (`tmap_mode("view")`):
`"Esri.WorldGrayCanvas"`, `"OpenStreetMap"`, and `"Esri.WorldTopoMap"`.
However, we can change the basemaps with a vector with the names of the tile layers' providers (@fig-tmbasemap1).
```{r}
#| eval: false
tmap_mode("view")
tm_basemap(c(StreetMap = "OpenStreetMap", TopoMap = "OpenTopoMap")) +
tm_shape(volcanos, is.main = TRUE) +
tm_dots(col = "red", group = "Volcanos")
```
```{r}
#| label: fig-tmbasemap1
#| cache: false
#| eval: true
#| echo: false
#| message: false
#| fig-cap: OpenStreetMap tile layer used as a base map with the red dots representing
#| volcanos on Easter Island.
library(tmap)
tmap_mode("view")
tmbasemap1 = tm_basemap(c(StreetMap = "OpenStreetMap", TopoMap = "OpenTopoMap")) +
tm_shape(volcanos, is.main = TRUE) +
tm_dots(col = "red", group = "Volcanos")
view_map(tmbasemap1, "tmbasemap1")
```
In the above code, we made two basemaps available: `"OpenStreetMap"` and `"OpenTopoMap"`, and for the map legend purpose, we renamed them as `StreetMap` and `TopoMap`.
A complete list of available basemaps is in the `leaflet::providers` object and on the https://leaflet-extras.github.io/leaflet-providers/preview/ website^[Additional details can be found in the `leaflet::providers.details` object].
<!-- explain why some providers do not work -->
<!-- ?do we need to register somewhere?: -->
<!-- https://github.com/leaflet-extras/leaflet-providers -->
<!-- how to add url tiles -->
<!-- how to setup your own server or some references? -->
The `tm_basemap(NULL)` function allows to disable basemaps entirely.
The `tm_tiles()` function, on the other hand, draws the tile layer on the top (as an overlay layer) of the previous `tm_` layer.
In the next example, we put the vector `"CartoDB.PositronOnlyLabels"` tiles on top of the previously set basemaps, but below the dots layer (@fig-tmtiles1).
```{r}
#| eval: false
tm_basemap(c(StreetMap = "OpenStreetMap", TopoMap = "OpenTopoMap")) +
tm_tiles(c(CartoDB = "CartoDB.PositronOnlyLabels")) +
tm_shape(volcanos, is.main = TRUE) +
tm_dots(col = "red", group = "Volcanos")
```
```{r}
#| label: fig-tmtiles1
#| cache: false
#| echo: false
#| message: false
#| fig-cap: OpenStreetMap tile layer used as a base map with dashed lines representing
#| island coastline and the red dots representing volcanos on Easter Island.
tmtiles1 = tm_basemap(c(StreetMap = "OpenStreetMap", TopoMap = "OpenTopoMap")) +
tm_tiles(c(CartoDB = "CartoDB.PositronOnlyLabels")) +
tm_shape(volcanos, is.main = TRUE) +
tm_dots(col = "red", group = "Volcanos")
view_map(tmtiles1, "tmtiles1")
```
Tile layers are usually created to be used interactively.
We can see it, for example, by the number of details varying depending on the zoom level we set.
That being said, many people find them useful also for static maps, and **tmap** allows us to use them in this way.
It uses the **maptiles** package to download the tiles and then plot them as a raster layer.
A complete list of available providers and some [information about zoom levels](https://wiki.openstreetmap.org/wiki/Zoom_levels) are in the help file of the `?maptiles::get_tiles()` function.
Different map tiles providers offer unique map styles, while zoom levels relate to different levels of detail -- the larger level, the more details we will get.
When using map tiles, we should also consider adding their attribution to the map.
Attribution for each provider can be obtained using the `maptiles::get_credit()` function by specifying the provider name, for example, `get_credit("CartoDB.VoyagerNoLabels").`
The code below plots the `"CartoDB.VoyagerNoLabels"` tiles in the background, adds the island outline in light blue color, and puts attribution text in the bottom right corner of the map (@fig-stiles)).
```{r}
#| label: fig-stiles
#| cache: false
#| fig-cap: 'Example of a static map using a downloaded `"CartoDB.VoyagerNoLabels"` tile layer.'
tmap_mode("plot")
tm_basemap("CartoDB.VoyagerNoLabels") +
tm_shape(ei_borders) +
tm_borders(lwd = 5, col = "lightblue") +
tm_credits(maptiles::get_credit("CartoDB.VoyagerNoLabels"),
bg.color = "white")
```