forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_solver_natural_api.py
265 lines (199 loc) · 7.93 KB
/
linear_solver_natural_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Patch to the python wrapper of ../linear_solver.h providing an algebraic API.
This is directly imported, and use exclusively in ./linear_solver.swig. See that
file.
For examples leveraging the code defined here, see ./pywraplp_test.py and
../../../python/linear_programming.py.
"""
import collections
import numbers
from six import iteritems
# The classes below allow linear expressions to be expressed naturally with the
# usual arithmetic operators +-*/ and with constant numbers, which makes the
# python API very intuitive. See the top-level comment for examples.
inf = float('inf')
class _FakeMPVariableRepresentingTheConstantOffset(object):
"""A dummy class for a singleton instance used to represent the constant.
To represent linear expressions, we store a dictionary
MPVariable->coefficient. To represent the constant offset of the expression,
we use this class as a substitute: its coefficient will be the offset. To
properly be evaluated, its solution_value() needs to be 1.
"""
def solution_value(self): # pylint: disable=invalid-name
return 1
def __repr__(self):
return 'OFFSET_KEY'
OFFSET_KEY = _FakeMPVariableRepresentingTheConstantOffset()
def CastToLinExp(v):
if isinstance(v, numbers.Number):
return Constant(v)
else:
return v
class LinearExpr(object):
"""Holds linear expressions.
A linear expression is essentially an offset (floating-point value), and a
dictionary mapping MPVariable objects to their coefficient (which is also a
floating-point value).
"""
OVERRIDDEN_OPERATOR_METHODS = [
'__%s__' % opname
for opname in ['add', 'radd', 'sub', 'rsub', 'mul', 'rmul', 'div',
'truediv', 'neg', 'eq', 'ge', 'le', 'gt', 'lt', 'ne']
]
def solution_value(self): # pylint: disable=invalid-name
"""Value of this linear expr, using the solution_value of its vars."""
coeffs = self.GetCoeffs()
return sum(var.solution_value() * coeff for var, coeff in coeffs.items())
def AddSelfToCoeffMapOrStack(self, coeffs, multiplier, stack):
"""Private function used by GetCoeffs() to delegate processing.
Implementation must either update coeffs or push to the stack a
sub-expression and the accumulated multiplier that applies to it.
Args:
coeffs: A dictionary of variables' coefficients. It is a defaultdict that
initializes the new values to 0 by default.
multiplier: The current accumulated multiplier to apply to this
expression.
stack: A list to append to if the current expression is composed of
sub-expressions. The elements of the stack are pair tuples
(multiplier, linear_expression).
"""
raise NotImplementedError
def GetCoeffs(self):
coeffs = collections.defaultdict(float)
stack = [(1.0, self)]
while stack:
current_multiplier, current_expression = stack.pop()
current_expression.AddSelfToCoeffMapOrStack(coeffs, current_multiplier,
stack)
return coeffs
def __add__(self, expr):
return Sum(self, expr)
def __radd__(self, cst):
return Sum(self, cst)
def __sub__(self, expr):
return Sum(self, -expr)
def __rsub__(self, cst):
return Sum(-self, cst)
def __mul__(self, cst):
return ProductCst(self, cst)
def __rmul__(self, cst):
return ProductCst(self, cst)
def __div__(self, cst):
return ProductCst(self, 1.0 / cst)
def __truediv__(self, cst):
return ProductCst(self, 1.0 / cst)
def __neg__(self):
return ProductCst(self, -1)
def __eq__(self, arg):
if isinstance(arg, numbers.Number):
return LinearConstraint(self, arg, arg)
else:
return LinearConstraint(self - arg, 0.0, 0.0)
def __ge__(self, arg):
if isinstance(arg, numbers.Number):
return LinearConstraint(self, arg, inf)
else:
return LinearConstraint(self - arg, 0.0, inf)
def __le__(self, arg):
if isinstance(arg, numbers.Number):
return LinearConstraint(self, -inf, arg)
else:
return LinearConstraint(self - arg, -inf, 0.0)
def __lt__(self, arg):
raise ValueError(
'Operators "<" and ">" not supported with the linear solver')
def __gt__(self, arg):
raise ValueError(
'Operators "<" and ">" not supported with the linear solver')
def __ne__(self, arg):
raise ValueError('Operator "!=" not supported with the linear solver')
class VariableExpr(LinearExpr):
"""Represents a LinearExpr containing only a single variable."""
def __init__(self, mpvar):
self.__var = mpvar
def AddSelfToCoeffMapOrStack(self, coeffs, multiplier, stack):
coeffs[self.__var] += multiplier
class ProductCst(LinearExpr):
"""Represents the product of a LinearExpr by a constant."""
def __init__(self, expr, coef):
self.__expr = CastToLinExp(expr)
if isinstance(coef, numbers.Number):
self.__coef = coef
else:
raise TypeError
def __str__(self):
if self.__coef == -1:
return '-' + str(self.__expr)
else:
return '(' + str(self.__coef) + ' * ' + str(self.__expr) + ')'
def AddSelfToCoeffMapOrStack(self, coeffs, multiplier, stack):
current_multiplier = multiplier * self.__coef
if current_multiplier:
stack.append((current_multiplier, self.__expr))
class Constant(LinearExpr):
def __init__(self, val):
self.__val = val
def __str__(self):
return str(self.__val)
def AddSelfToCoeffMapOrStack(self, coeffs, multiplier, stack):
coeffs[OFFSET_KEY] += self.__val * multiplier
class SumArray(LinearExpr):
"""Represents the sum of a list of LinearExpr."""
def __init__(self, array):
self.__array = [CastToLinExp(elem) for elem in array]
def __str__(self):
return '({})'.format(' + '.join(map(str, self.__array)))
def AddSelfToCoeffMapOrStack(self, coeffs, multiplier, stack):
# Append elements in reversed order so that the first popped from the stack
# in the next iteration of the evaluation loop will be the first item of the
# array. This keeps the end result of the floating point computation
# predictable from user perspective.
for arg in reversed(self.__array):
stack.append((multiplier, arg))
def Sum(*args):
return SumArray(args)
SumCst = Sum # pylint: disable=invalid-name
class LinearConstraint(object):
"""Represents a linear constraint: LowerBound <= LinearExpr <= UpperBound."""
def __init__(self, expr, lb, ub):
self.__expr = expr
self.__lb = lb
self.__ub = ub
def __str__(self):
if self.__lb > -inf and self.__ub < inf:
if self.__lb == self.__ub:
return str(self.__expr) + ' == ' + str(self.__lb)
else:
return (str(self.__lb) + ' <= ' + str(self.__expr) +
' <= ' + str(self.__ub))
elif self.__lb > -inf:
return str(self.__expr) + ' >= ' + str(self.__lb)
elif self.__ub < inf:
return str(self.__expr) + ' <= ' + str(self.__ub)
else:
return 'Trivial inequality (always true)'
def Extract(self, solver, name=''):
"""Performs the actual creation of the constraint object."""
coeffs = self.__expr.GetCoeffs()
constant = coeffs.pop(OFFSET_KEY, 0.0)
lb = -solver.infinity()
ub = solver.infinity()
if self.__lb > -inf:
lb = self.__lb - constant
if self.__ub < inf:
ub = self.__ub - constant
constraint = solver.RowConstraint(lb, ub, name)
for v, c, in iteritems(coeffs):
constraint.SetCoefficient(v, float(c))
return constraint