forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcp_model_checker.cc
1111 lines (1020 loc) · 41.5 KB
/
cp_model_checker.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/cp_model_checker.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/strings/str_cat.h"
#include "ortools/base/hash.h"
#include "ortools/base/logging.h"
#include "ortools/base/map_util.h"
#include "ortools/port/proto_utils.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_utils.h"
#include "ortools/util/saturated_arithmetic.h"
#include "ortools/util/sorted_interval_list.h"
namespace operations_research {
namespace sat {
namespace {
// =============================================================================
// CpModelProto validation.
// =============================================================================
// If the string returned by "statement" is not empty, returns it.
#define RETURN_IF_NOT_EMPTY(statement) \
do { \
const std::string error_message = statement; \
if (!error_message.empty()) return error_message; \
} while (false)
template <typename ProtoWithDomain>
bool DomainInProtoIsValid(const ProtoWithDomain& proto) {
if (proto.domain().size() % 2) return false;
std::vector<ClosedInterval> domain;
for (int i = 0; i < proto.domain_size(); i += 2) {
if (proto.domain(i) > proto.domain(i + 1)) return false;
domain.push_back({proto.domain(i), proto.domain(i + 1)});
}
return IntervalsAreSortedAndNonAdjacent(domain);
}
bool VariableReferenceIsValid(const CpModelProto& model, int reference) {
// We do it this way to avoid overflow if reference is kint64min for instance.
if (reference >= model.variables_size()) return false;
return reference >= -static_cast<int>(model.variables_size());
}
bool LiteralReferenceIsValid(const CpModelProto& model, int reference) {
if (!VariableReferenceIsValid(model, reference)) return false;
const auto& var_proto = model.variables(PositiveRef(reference));
const int64 min_domain = var_proto.domain(0);
const int64 max_domain = var_proto.domain(var_proto.domain_size() - 1);
return min_domain >= 0 && max_domain <= 1;
}
std::string ValidateIntegerVariable(const CpModelProto& model, int v) {
const IntegerVariableProto& proto = model.variables(v);
if (proto.domain_size() == 0) {
return absl::StrCat("var #", v,
" has no domain(): ", ProtobufShortDebugString(proto));
}
if (proto.domain_size() % 2 != 0) {
return absl::StrCat("var #", v, " has an odd domain() size: ",
ProtobufShortDebugString(proto));
}
if (!DomainInProtoIsValid(proto)) {
return absl::StrCat("var #", v, " has and invalid domain() format: ",
ProtobufShortDebugString(proto));
}
// Internally, we often take the negation of a domain, and we also want to
// have sentinel values greater than the min/max of a variable domain, so
// the domain must fall in [kint64min + 2, kint64max - 1].
const int64 lb = proto.domain(0);
const int64 ub = proto.domain(proto.domain_size() - 1);
if (lb < kint64min + 2 || ub > kint64max - 1) {
return absl::StrCat(
"var #", v, " domain do not fall in [kint64min + 2, kint64max - 1]. ",
ProtobufShortDebugString(proto));
}
// We do compute ub - lb in some place in the code and do not want to deal
// with overflow everywhere. This seems like a reasonable precondition anyway.
if (lb < 0 && lb + kint64max < ub) {
return absl::StrCat(
"var #", v,
" has a domain that is too large, i.e. |UB - LB| overflow an int64: ",
ProtobufShortDebugString(proto));
}
return "";
}
std::string ValidateArgumentReferencesInConstraint(const CpModelProto& model,
int c) {
const ConstraintProto& ct = model.constraints(c);
IndexReferences references = GetReferencesUsedByConstraint(ct);
for (const int v : references.variables) {
if (!VariableReferenceIsValid(model, v)) {
return absl::StrCat("Out of bound integer variable ", v,
" in constraint #", c, " : ",
ProtobufShortDebugString(ct));
}
}
for (const int lit : ct.enforcement_literal()) {
if (!LiteralReferenceIsValid(model, lit)) {
return absl::StrCat("Invalid enforcement literal ", lit,
" in constraint #", c, " : ",
ProtobufShortDebugString(ct));
}
}
for (const int lit : references.literals) {
if (!LiteralReferenceIsValid(model, lit)) {
return absl::StrCat("Invalid literal ", lit, " in constraint #", c, " : ",
ProtobufShortDebugString(ct));
}
}
for (const int i : UsedIntervals(ct)) {
if (i < 0 || i >= model.constraints_size()) {
return absl::StrCat("Out of bound interval ", i, " in constraint #", c,
" : ", ProtobufShortDebugString(ct));
}
if (model.constraints(i).constraint_case() !=
ConstraintProto::ConstraintCase::kInterval) {
return absl::StrCat(
"Interval ", i,
" does not refer to an interval constraint. Problematic constraint #",
c, " : ", ProtobufShortDebugString(ct));
}
}
return "";
}
template <class LinearExpressionProto>
bool PossibleIntegerOverflow(const CpModelProto& model,
const LinearExpressionProto& proto) {
int64 sum_min = 0;
int64 sum_max = 0;
for (int i = 0; i < proto.vars_size(); ++i) {
const int ref = proto.vars(i);
const auto& var_proto = model.variables(PositiveRef(ref));
const int64 min_domain = var_proto.domain(0);
const int64 max_domain = var_proto.domain(var_proto.domain_size() - 1);
const int64 coeff = RefIsPositive(ref) ? proto.coeffs(i) : -proto.coeffs(i);
const int64 prod1 = CapProd(min_domain, coeff);
const int64 prod2 = CapProd(max_domain, coeff);
// Note that we use min/max with zero to disallow "alternative" terms and
// be sure that we cannot have an overflow if we do the computation in a
// different order.
sum_min = CapAdd(sum_min, std::min(int64{0}, std::min(prod1, prod2)));
sum_max = CapAdd(sum_max, std::max(int64{0}, std::max(prod1, prod2)));
for (const int64 v : {prod1, prod2, sum_min, sum_max}) {
if (v == kint64max || v == kint64min) return true;
}
}
return false;
}
std::string ValidateIntervalConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
const IntervalConstraintProto& arg = ct.interval();
if (arg.size() < 0) {
const IntegerVariableProto& size_var_proto =
model.variables(NegatedRef(arg.size()));
if (size_var_proto.domain(size_var_proto.domain_size() - 1) > 0) {
return absl::StrCat(
"Negative value in interval size domain: ", ProtobufDebugString(ct),
"negation of size var: ", ProtobufDebugString(size_var_proto));
}
} else {
const IntegerVariableProto& size_var_proto = model.variables(arg.size());
if (size_var_proto.domain(0) < 0) {
return absl::StrCat(
"Negative value in interval size domain: ", ProtobufDebugString(ct),
"size var: ", ProtobufDebugString(size_var_proto));
}
}
return "";
}
std::string ValidateLinearConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
const LinearConstraintProto& arg = ct.linear();
if (PossibleIntegerOverflow(model, arg)) {
return "Possible integer overflow in constraint: " +
ProtobufDebugString(ct);
}
return "";
}
std::string ValidateLinearExpression(const CpModelProto& model,
const LinearExpressionProto& expr) {
if (expr.coeffs_size() != expr.vars_size()) {
return absl::StrCat("coeffs_size() != vars_size() in linear expression: ",
ProtobufShortDebugString(expr));
}
if (PossibleIntegerOverflow(model, expr)) {
return absl::StrCat("Possible overflow in linear expression: ",
ProtobufShortDebugString(expr));
}
return "";
}
std::string ValidateCircuitConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
const int size = ct.circuit().tails().size();
if (ct.circuit().heads().size() != size ||
ct.circuit().literals().size() != size) {
return absl::StrCat("Wrong field sizes in circuit: ",
ProtobufShortDebugString(ct));
}
return "";
}
std::string ValidateRoutesConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
const int size = ct.routes().tails().size();
if (ct.routes().heads().size() != size ||
ct.routes().literals().size() != size) {
return absl::StrCat("Wrong field sizes in routes: ",
ProtobufShortDebugString(ct));
}
return "";
}
std::string ValidateReservoirConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
if (ct.enforcement_literal_size() > 0) {
return "Reservoir does not support enforcement literals.";
}
if (ct.reservoir().times().size() != ct.reservoir().demands().size()) {
return absl::StrCat("Times and demands fields must be of the same size: ",
ProtobufShortDebugString(ct));
}
for (const int t : ct.reservoir().times()) {
const IntegerVariableProto& time = model.variables(t);
for (const int64 bound : time.domain()) {
if (bound < 0) {
return absl::StrCat("Time variables must be >= 0 in constraint ",
ProtobufShortDebugString(ct));
}
}
}
int64 sum_abs = 0;
for (const int64 demand : ct.reservoir().demands()) {
sum_abs = CapAdd(sum_abs, std::abs(demand));
if (sum_abs == kint64max) {
return "Possible integer overflow in constraint: " +
ProtobufDebugString(ct);
}
}
if (ct.reservoir().actives_size() > 0 &&
ct.reservoir().actives_size() != ct.reservoir().times_size()) {
return "Wrong array length of actives variables";
}
if (ct.reservoir().demands_size() > 0 &&
ct.reservoir().demands_size() != ct.reservoir().times_size()) {
return "Wrong array length of demands variables";
}
return "";
}
std::string ValidateCircuitCoveringConstraint(const ConstraintProto& ct) {
const int num_nodes = ct.circuit_covering().nexts_size();
for (const int d : ct.circuit_covering().distinguished_nodes()) {
if (d < 0 || d >= num_nodes) {
return absl::StrCat("Distinguished node ", d, " not in [0, ", num_nodes,
").");
}
}
return "";
}
std::string ValidateIntModConstraint(const CpModelProto& model,
const ConstraintProto& ct) {
if (ct.int_mod().vars().size() != 2) {
return absl::StrCat("An int_mod constraint should have exactly 2 terms: ",
ProtobufShortDebugString(ct));
}
const IntegerVariableProto& mod_proto = model.variables(ct.int_mod().vars(1));
if (mod_proto.domain(0) <= 0) {
return absl::StrCat(
"An int_mod must have a strictly positive modulo argument: ",
ProtobufShortDebugString(ct));
}
return "";
}
std::string ValidateObjective(const CpModelProto& model,
const CpObjectiveProto& obj) {
if (!DomainInProtoIsValid(obj)) {
return absl::StrCat("The objective has and invalid domain() format: ",
ProtobufShortDebugString(obj));
}
if (obj.vars().size() != obj.coeffs().size()) {
return absl::StrCat("vars and coeffs size do not match in objective: ",
ProtobufShortDebugString(obj));
}
for (const int v : obj.vars()) {
if (!VariableReferenceIsValid(model, v)) {
return absl::StrCat("Out of bound integer variable ", v,
" in objective: ", ProtobufShortDebugString(obj));
}
}
if (PossibleIntegerOverflow(model, obj)) {
return "Possible integer overflow in objective: " +
ProtobufDebugString(obj);
}
return "";
}
std::string ValidateSearchStrategies(const CpModelProto& model) {
for (const DecisionStrategyProto& strategy : model.search_strategy()) {
for (const int ref : strategy.variables()) {
if (!VariableReferenceIsValid(model, ref)) {
return absl::StrCat("Invalid variable reference in strategy: ",
ProtobufShortDebugString(strategy));
}
}
for (const auto& transformation : strategy.transformations()) {
if (transformation.positive_coeff() <= 0) {
return absl::StrCat("Affine transformation coeff should be positive: ",
ProtobufShortDebugString(transformation));
}
if (!VariableReferenceIsValid(model, transformation.var())) {
return absl::StrCat(
"Invalid variable reference in affine transformation: ",
ProtobufShortDebugString(transformation));
}
}
}
return "";
}
std::string ValidateSolutionHint(const CpModelProto& model) {
if (!model.has_solution_hint()) return "";
const auto& hint = model.solution_hint();
if (hint.vars().size() != hint.values().size()) {
return "Invalid solution hint: vars and values do not have the same size.";
}
for (const int ref : hint.vars()) {
if (!VariableReferenceIsValid(model, ref)) {
return absl::StrCat("Invalid variable reference in solution hint: ", ref);
}
}
return "";
}
} // namespace
std::string ValidateCpModel(const CpModelProto& model) {
for (int v = 0; v < model.variables_size(); ++v) {
RETURN_IF_NOT_EMPTY(ValidateIntegerVariable(model, v));
}
for (int c = 0; c < model.constraints_size(); ++c) {
RETURN_IF_NOT_EMPTY(ValidateArgumentReferencesInConstraint(model, c));
// By default, a constraint does not support enforcement literals except if
// explicitly stated by setting this to true below.
bool support_enforcement = false;
// Other non-generic validations.
// TODO(user): validate all constraints.
const ConstraintProto& ct = model.constraints(c);
const ConstraintProto::ConstraintCase type = ct.constraint_case();
switch (type) {
case ConstraintProto::ConstraintCase::kIntDiv:
if (ct.int_div().vars().size() != 2) {
return absl::StrCat(
"An int_div constraint should have exactly 2 terms: ",
ProtobufShortDebugString(ct));
}
break;
case ConstraintProto::ConstraintCase::kIntMod:
RETURN_IF_NOT_EMPTY(ValidateIntModConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kBoolOr:
support_enforcement = true;
break;
case ConstraintProto::ConstraintCase::kBoolAnd:
support_enforcement = true;
break;
case ConstraintProto::ConstraintCase::kLinear:
support_enforcement = true;
if (!DomainInProtoIsValid(ct.linear())) {
return absl::StrCat("Invalid domain in constraint #", c, " : ",
ProtobufShortDebugString(ct));
}
if (ct.linear().coeffs_size() != ct.linear().vars_size()) {
return absl::StrCat("coeffs_size() != vars_size() in constraint #", c,
" : ", ProtobufShortDebugString(ct));
}
RETURN_IF_NOT_EMPTY(ValidateLinearConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kLinMax: {
const std::string target_error =
ValidateLinearExpression(model, ct.lin_min().target());
if (!target_error.empty()) return target_error;
for (int i = 0; i < ct.lin_max().exprs_size(); ++i) {
const std::string expr_error =
ValidateLinearExpression(model, ct.lin_max().exprs(i));
if (!expr_error.empty()) return expr_error;
}
break;
}
case ConstraintProto::ConstraintCase::kLinMin: {
const std::string target_error =
ValidateLinearExpression(model, ct.lin_min().target());
if (!target_error.empty()) return target_error;
for (int i = 0; i < ct.lin_min().exprs_size(); ++i) {
const std::string expr_error =
ValidateLinearExpression(model, ct.lin_min().exprs(i));
if (!expr_error.empty()) return expr_error;
}
break;
}
case ConstraintProto::ConstraintCase::kInterval:
support_enforcement = true;
RETURN_IF_NOT_EMPTY(ValidateIntervalConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kCumulative:
if (ct.cumulative().intervals_size() !=
ct.cumulative().demands_size()) {
return absl::StrCat(
"intervals_size() != demands_size() in constraint #", c, " : ",
ProtobufShortDebugString(ct));
}
break;
case ConstraintProto::ConstraintCase::kInverse:
if (ct.inverse().f_direct().size() != ct.inverse().f_inverse().size()) {
return absl::StrCat("Non-matching fields size in inverse: ",
ProtobufShortDebugString(ct));
}
break;
case ConstraintProto::ConstraintCase::kCircuit:
RETURN_IF_NOT_EMPTY(ValidateCircuitConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kRoutes:
RETURN_IF_NOT_EMPTY(ValidateRoutesConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kReservoir:
RETURN_IF_NOT_EMPTY(ValidateReservoirConstraint(model, ct));
break;
case ConstraintProto::ConstraintCase::kCircuitCovering:
RETURN_IF_NOT_EMPTY(ValidateCircuitCoveringConstraint(ct));
break;
default:
break;
}
// Because some client set fixed enforcement literal which are supported
// in the presolve for all constraints, we just check that there is no
// non-fixed enforcement.
if (!support_enforcement && !ct.enforcement_literal().empty()) {
for (const int ref : ct.enforcement_literal()) {
const int var = PositiveRef(ref);
const Domain domain = ReadDomainFromProto(model.variables(var));
if (domain.Size() != 1) {
return absl::StrCat(
"Enforcement literal not supported in constraint: ",
ProtobufShortDebugString(ct));
}
}
}
}
if (model.has_objective()) {
RETURN_IF_NOT_EMPTY(ValidateObjective(model, model.objective()));
}
RETURN_IF_NOT_EMPTY(ValidateSearchStrategies(model));
RETURN_IF_NOT_EMPTY(ValidateSolutionHint(model));
for (const int ref : model.assumptions()) {
if (!LiteralReferenceIsValid(model, ref)) {
return absl::StrCat("Invalid literal reference ", ref,
" in the 'assumptions' field.");
}
}
return "";
}
#undef RETURN_IF_NOT_EMPTY
// =============================================================================
// Solution Feasibility.
// =============================================================================
namespace {
class ConstraintChecker {
public:
explicit ConstraintChecker(const std::vector<int64>& variable_values)
: variable_values_(variable_values) {}
bool LiteralIsTrue(int l) const {
if (l >= 0) return variable_values_[l] != 0;
return variable_values_[-l - 1] == 0;
}
bool LiteralIsFalse(int l) const { return !LiteralIsTrue(l); }
int64 Value(int var) const {
if (var >= 0) return variable_values_[var];
return -variable_values_[-var - 1];
}
bool ConstraintIsEnforced(const ConstraintProto& ct) {
for (const int lit : ct.enforcement_literal()) {
if (LiteralIsFalse(lit)) return false;
}
return true;
}
bool BoolOrConstraintIsFeasible(const ConstraintProto& ct) {
for (const int lit : ct.bool_or().literals()) {
if (LiteralIsTrue(lit)) return true;
}
return false;
}
bool BoolAndConstraintIsFeasible(const ConstraintProto& ct) {
for (const int lit : ct.bool_and().literals()) {
if (LiteralIsFalse(lit)) return false;
}
return true;
}
bool AtMostOneConstraintIsFeasible(const ConstraintProto& ct) {
int num_true_literals = 0;
for (const int lit : ct.at_most_one().literals()) {
if (LiteralIsTrue(lit)) ++num_true_literals;
}
return num_true_literals <= 1;
}
bool BoolXorConstraintIsFeasible(const ConstraintProto& ct) {
int sum = 0;
for (const int lit : ct.bool_xor().literals()) {
sum ^= LiteralIsTrue(lit) ? 1 : 0;
}
return sum == 1;
}
bool LinearConstraintIsFeasible(const ConstraintProto& ct) {
int64 sum = 0;
const int num_variables = ct.linear().coeffs_size();
for (int i = 0; i < num_variables; ++i) {
sum += Value(ct.linear().vars(i)) * ct.linear().coeffs(i);
}
return DomainInProtoContains(ct.linear(), sum);
}
bool IntMaxConstraintIsFeasible(const ConstraintProto& ct) {
const int64 max = Value(ct.int_max().target());
int64 actual_max = kint64min;
for (int i = 0; i < ct.int_max().vars_size(); ++i) {
actual_max = std::max(actual_max, Value(ct.int_max().vars(i)));
}
return max == actual_max;
}
int64 LinearExpressionValue(const LinearExpressionProto& expr) {
int64 sum = expr.offset();
const int num_variables = expr.vars_size();
for (int i = 0; i < num_variables; ++i) {
sum += Value(expr.vars(i)) * expr.coeffs(i);
}
return sum;
}
bool LinMaxConstraintIsFeasible(const ConstraintProto& ct) {
const int64 max = LinearExpressionValue(ct.lin_max().target());
int64 actual_max = kint64min;
for (int i = 0; i < ct.lin_max().exprs_size(); ++i) {
const int64 expr_value = LinearExpressionValue(ct.lin_max().exprs(i));
actual_max = std::max(actual_max, expr_value);
}
return max == actual_max;
}
bool IntProdConstraintIsFeasible(const ConstraintProto& ct) {
const int64 prod = Value(ct.int_prod().target());
int64 actual_prod = 1;
for (int i = 0; i < ct.int_prod().vars_size(); ++i) {
actual_prod *= Value(ct.int_prod().vars(i));
}
return prod == actual_prod;
}
bool IntDivConstraintIsFeasible(const ConstraintProto& ct) {
return Value(ct.int_div().target()) ==
Value(ct.int_div().vars(0)) / Value(ct.int_div().vars(1));
}
bool IntModConstraintIsFeasible(const ConstraintProto& ct) {
return Value(ct.int_mod().target()) ==
Value(ct.int_mod().vars(0)) % Value(ct.int_mod().vars(1));
}
bool IntMinConstraintIsFeasible(const ConstraintProto& ct) {
const int64 min = Value(ct.int_min().target());
int64 actual_min = kint64max;
for (int i = 0; i < ct.int_min().vars_size(); ++i) {
actual_min = std::min(actual_min, Value(ct.int_min().vars(i)));
}
return min == actual_min;
}
bool LinMinConstraintIsFeasible(const ConstraintProto& ct) {
const int64 min = LinearExpressionValue(ct.lin_min().target());
int64 actual_min = kint64max;
for (int i = 0; i < ct.lin_min().exprs_size(); ++i) {
const int64 expr_value = LinearExpressionValue(ct.lin_min().exprs(i));
actual_min = std::min(actual_min, expr_value);
}
return min == actual_min;
}
bool AllDiffConstraintIsFeasible(const ConstraintProto& ct) {
absl::flat_hash_set<int64> values;
for (const int v : ct.all_diff().vars()) {
if (gtl::ContainsKey(values, Value(v))) return false;
values.insert(Value(v));
}
return true;
}
bool IntervalConstraintIsFeasible(const ConstraintProto& ct) {
const int64 size = Value(ct.interval().size());
if (size < 0) return false;
return Value(ct.interval().start()) + size == Value(ct.interval().end());
}
bool NoOverlapConstraintIsFeasible(const CpModelProto& model,
const ConstraintProto& ct) {
std::vector<std::pair<int64, int64>> start_durations_pairs;
for (const int i : ct.no_overlap().intervals()) {
const ConstraintProto& interval_constraint = model.constraints(i);
if (ConstraintIsEnforced(interval_constraint)) {
const IntervalConstraintProto& interval =
interval_constraint.interval();
start_durations_pairs.push_back(
{Value(interval.start()), Value(interval.size())});
}
}
std::sort(start_durations_pairs.begin(), start_durations_pairs.end());
int64 previous_end = kint64min;
for (const auto pair : start_durations_pairs) {
if (pair.first < previous_end) return false;
previous_end = pair.first + pair.second;
}
return true;
}
bool IntervalsAreDisjoint(const IntervalConstraintProto& interval1,
const IntervalConstraintProto& interval2) {
return Value(interval1.end()) <= Value(interval2.start()) ||
Value(interval2.end()) <= Value(interval1.start());
}
bool IntervalIsEmpty(const IntervalConstraintProto& interval) {
return Value(interval.start()) == Value(interval.end());
}
bool NoOverlap2DConstraintIsFeasible(const CpModelProto& model,
const ConstraintProto& ct) {
const auto& arg = ct.no_overlap_2d();
// Those intervals from arg.x_intervals and arg.y_intervals where both
// the x and y intervals are enforced.
std::vector<std::pair<const IntervalConstraintProto* const,
const IntervalConstraintProto* const>>
enforced_intervals_xy;
{
const int num_intervals = arg.x_intervals_size();
CHECK_EQ(arg.y_intervals_size(), num_intervals);
for (int i = 0; i < num_intervals; ++i) {
const ConstraintProto& x = model.constraints(arg.x_intervals(i));
const ConstraintProto& y = model.constraints(arg.y_intervals(i));
if (ConstraintIsEnforced(x) && ConstraintIsEnforced(y) &&
(!arg.boxes_with_null_area_can_overlap() ||
(!IntervalIsEmpty(x.interval()) &&
!IntervalIsEmpty(y.interval())))) {
enforced_intervals_xy.push_back({&x.interval(), &y.interval()});
}
}
}
const int num_enforced_intervals = enforced_intervals_xy.size();
for (int i = 0; i < num_enforced_intervals; ++i) {
for (int j = i + 1; j < num_enforced_intervals; ++j) {
const auto& xi = *enforced_intervals_xy[i].first;
const auto& yi = *enforced_intervals_xy[i].second;
const auto& xj = *enforced_intervals_xy[j].first;
const auto& yj = *enforced_intervals_xy[j].second;
if (!IntervalsAreDisjoint(xi, xj) && !IntervalsAreDisjoint(yi, yj) &&
!IntervalIsEmpty(xi) && !IntervalIsEmpty(xj) &&
!IntervalIsEmpty(yi) && !IntervalIsEmpty(yj)) {
VLOG(1) << "Interval " << i << "(x=[" << Value(xi.start()) << ", "
<< Value(xi.end()) << "], y=[" << Value(yi.start()) << ", "
<< Value(yi.end()) << "]) and " << j << "("
<< "(x=[" << Value(xj.start()) << ", " << Value(xj.end())
<< "], y=[" << Value(yj.start()) << ", " << Value(yj.end())
<< "]) are not disjoint.";
return false;
}
}
}
return true;
}
bool CumulativeConstraintIsFeasible(const CpModelProto& model,
const ConstraintProto& ct) {
// TODO(user,user): Improve complexity for large durations.
const int64 capacity = Value(ct.cumulative().capacity());
const int num_intervals = ct.cumulative().intervals_size();
absl::flat_hash_map<int64, int64> usage;
for (int i = 0; i < num_intervals; ++i) {
const ConstraintProto interval_constraint =
model.constraints(ct.cumulative().intervals(i));
if (ConstraintIsEnforced(interval_constraint)) {
const IntervalConstraintProto& interval =
interval_constraint.interval();
const int64 start = Value(interval.start());
const int64 duration = Value(interval.size());
const int64 demand = Value(ct.cumulative().demands(i));
for (int64 t = start; t < start + duration; ++t) {
usage[t] += demand;
if (usage[t] > capacity) return false;
}
}
}
return true;
}
bool ElementConstraintIsFeasible(const ConstraintProto& ct) {
const int index = Value(ct.element().index());
return Value(ct.element().vars(index)) == Value(ct.element().target());
}
bool TableConstraintIsFeasible(const ConstraintProto& ct) {
const int size = ct.table().vars_size();
if (size == 0) return true;
for (int row_start = 0; row_start < ct.table().values_size();
row_start += size) {
int i = 0;
while (Value(ct.table().vars(i)) == ct.table().values(row_start + i)) {
++i;
if (i == size) return !ct.table().negated();
}
}
return ct.table().negated();
}
bool AutomatonConstraintIsFeasible(const ConstraintProto& ct) {
// Build the transition table {tail, label} -> head.
absl::flat_hash_map<std::pair<int64, int64>, int64> transition_map;
const int num_transitions = ct.automaton().transition_tail().size();
for (int i = 0; i < num_transitions; ++i) {
transition_map[{ct.automaton().transition_tail(i),
ct.automaton().transition_label(i)}] =
ct.automaton().transition_head(i);
}
// Walk the automaton.
int64 current_state = ct.automaton().starting_state();
const int num_steps = ct.automaton().vars_size();
for (int i = 0; i < num_steps; ++i) {
const std::pair<int64, int64> key = {current_state,
Value(ct.automaton().vars(i))};
if (!gtl::ContainsKey(transition_map, key)) {
return false;
}
current_state = transition_map[key];
}
// Check we are now in a final state.
for (const int64 final : ct.automaton().final_states()) {
if (current_state == final) return true;
}
return false;
}
bool CircuitConstraintIsFeasible(const ConstraintProto& ct) {
// Compute the set of relevant nodes for the constraint and set the next of
// each of them. This also detects duplicate nexts.
const int num_arcs = ct.circuit().tails_size();
absl::flat_hash_set<int> nodes;
absl::flat_hash_map<int, int> nexts;
for (int i = 0; i < num_arcs; ++i) {
const int tail = ct.circuit().tails(i);
const int head = ct.circuit().heads(i);
nodes.insert(tail);
nodes.insert(head);
if (LiteralIsFalse(ct.circuit().literals(i))) continue;
if (nexts.contains(tail)) return false; // Duplicate.
nexts[tail] = head;
}
// All node must have a next.
int in_cycle;
int cycle_size = 0;
for (const int node : nodes) {
if (!nexts.contains(node)) return false; // No next.
if (nexts[node] == node) continue; // skip self-loop.
in_cycle = node;
++cycle_size;
}
if (cycle_size == 0) return true;
// Check that we have only one cycle. visited is used to not loop forever if
// we have a "rho" shape instead of a cycle.
absl::flat_hash_set<int> visited;
int current = in_cycle;
int num_visited = 0;
while (!visited.contains(current)) {
++num_visited;
visited.insert(current);
current = nexts[current];
}
if (current != in_cycle) return false; // Rho shape.
return num_visited == cycle_size; // Another cycle somewhere if false.
}
bool RoutesConstraintIsFeasible(const ConstraintProto& ct) {
const int num_arcs = ct.routes().tails_size();
int num_used_arcs = 0;
int num_self_arcs = 0;
int num_nodes = 0;
std::vector<int> tail_to_head;
std::vector<int> depot_nexts;
for (int i = 0; i < num_arcs; ++i) {
const int tail = ct.routes().tails(i);
const int head = ct.routes().heads(i);
num_nodes = std::max(num_nodes, 1 + tail);
num_nodes = std::max(num_nodes, 1 + head);
tail_to_head.resize(num_nodes, -1);
if (LiteralIsTrue(ct.routes().literals(i))) {
if (tail == head) {
if (tail == 0) return false;
++num_self_arcs;
continue;
}
++num_used_arcs;
if (tail == 0) {
depot_nexts.push_back(head);
} else {
if (tail_to_head[tail] != -1) return false;
tail_to_head[tail] = head;
}
}
}
// An empty constraint with no node to visit should be feasible.
if (num_nodes == 0) return true;
// Make sure each routes from the depot go back to it, and count such arcs.
int count = 0;
for (int start : depot_nexts) {
++count;
while (start != 0) {
if (tail_to_head[start] == -1) return false;
start = tail_to_head[start];
++count;
}
}
if (count != num_used_arcs) {
VLOG(1) << "count: " << count << " != num_used_arcs:" << num_used_arcs;
return false;
}
// Each routes cover as many node as there is arcs, but this way we count
// multiple times the depot. So the number of nodes covered are:
// count - depot_nexts.size() + 1.
// And this number + the self arcs should be num_nodes.
if (count - depot_nexts.size() + 1 + num_self_arcs != num_nodes) {
VLOG(1) << "Not all nodes are covered!";
return false;
}
return true;
}
bool CircuitCoveringConstraintIsFeasible(const ConstraintProto& ct) {
const int num_nodes = ct.circuit_covering().nexts_size();
std::vector<bool> distinguished(num_nodes, false);
std::vector<bool> visited(num_nodes, false);
for (const int node : ct.circuit_covering().distinguished_nodes()) {
distinguished[node] = true;
}
// By design, every node has exactly one neighbour.
// Check that distinguished nodes do not share a circuit,
// mark nodes visited during the process.
std::vector<int> next(num_nodes, -1);
for (const int d : ct.circuit_covering().distinguished_nodes()) {
visited[d] = true;
for (int node = Value(ct.circuit_covering().nexts(d)); node != d;
node = Value(ct.circuit_covering().nexts(node))) {
if (distinguished[node]) return false;
CHECK(!visited[node]);
visited[node] = true;
}
}
// Check that nodes that were not visited are all loops.
for (int node = 0; node < num_nodes; node++) {
if (!visited[node] && Value(ct.circuit_covering().nexts(node)) != node) {
return false;
}
}
return true;
}
bool InverseConstraintIsFeasible(const ConstraintProto& ct) {
const int num_variables = ct.inverse().f_direct_size();
if (num_variables != ct.inverse().f_inverse_size()) return false;
// Check that f_inverse(f_direct(i)) == i; this is sufficient.
for (int i = 0; i < num_variables; i++) {
const int fi = Value(ct.inverse().f_direct(i));
if (fi < 0 || num_variables <= fi) return false;
if (i != Value(ct.inverse().f_inverse(fi))) return false;
}
return true;
}
bool ReservoirConstraintIsFeasible(const ConstraintProto& ct) {
const int num_variables = ct.reservoir().times_size();
const int64 min_level = ct.reservoir().min_level();
const int64 max_level = ct.reservoir().max_level();
std::map<int64, int64> deltas;
deltas[0] = 0;
const bool has_active_variables = ct.reservoir().actives_size() > 0;
for (int i = 0; i < num_variables; i++) {
const int64 time = Value(ct.reservoir().times(i));
if (time < 0) {
VLOG(1) << "reservoir times(" << i << ") is negative.";
return false;
}
if (!has_active_variables || Value(ct.reservoir().actives(i)) == 1) {
deltas[time] += ct.reservoir().demands(i);
}
}
int64 current_level = 0;
for (const auto& delta : deltas) {
current_level += delta.second;
if (current_level < min_level || current_level > max_level) {
VLOG(1) << "Reservoir level " << current_level
<< " is out of bounds at time" << delta.first;
return false;
}
}
return true;
}
private:
std::vector<int64> variable_values_;
};
} // namespace
bool SolutionIsFeasible(const CpModelProto& model,
const std::vector<int64>& variable_values,
const CpModelProto* mapping_proto,
const std::vector<int>* postsolve_mapping) {
if (variable_values.size() != model.variables_size()) {
VLOG(1) << "Wrong number of variables in the solution vector";
return false;
}
// Check that all values fall in the variable domains.
for (int i = 0; i < model.variables_size(); ++i) {
if (!DomainInProtoContains(model.variables(i), variable_values[i])) {
VLOG(1) << "Variable #" << i << " has value " << variable_values[i]
<< " which do not fall in its domain: "
<< ProtobufShortDebugString(model.variables(i));
return false;
}
}
CHECK_EQ(variable_values.size(), model.variables_size());
ConstraintChecker checker(variable_values);
for (int c = 0; c < model.constraints_size(); ++c) {