forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcumulative_energy.cc
290 lines (263 loc) · 11.7 KB
/
cumulative_energy.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/cumulative_energy.h"
#include <memory>
#include <utility>
#include "ortools/base/int_type.h"
#include "ortools/base/iterator_adaptors.h"
#include "ortools/base/logging.h"
#include "ortools/sat/sat_base.h"
namespace operations_research {
namespace sat {
void AddCumulativeEnergyConstraint(std::vector<AffineExpression> energies,
AffineExpression capacity,
SchedulingConstraintHelper* helper,
Model* model) {
auto* watcher = model->GetOrCreate<GenericLiteralWatcher>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
CumulativeEnergyConstraint* constraint = new CumulativeEnergyConstraint(
std::move(energies), capacity, integer_trail, helper);
constraint->RegisterWith(watcher);
model->TakeOwnership(constraint);
}
void AddCumulativeOverloadChecker(const std::vector<AffineExpression>& demands,
AffineExpression capacity,
SchedulingConstraintHelper* helper,
Model* model) {
auto* watcher = model->GetOrCreate<GenericLiteralWatcher>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
std::vector<AffineExpression> energies;
const int num_tasks = helper->NumTasks();
CHECK_EQ(demands.size(), num_tasks);
for (int t = 0; t < num_tasks; ++t) {
// TODO(user): Remove once helper->Durations()[t] is an expression.
const AffineExpression duration =
helper->DurationVars()[t] == kNoIntegerVariable ||
integer_trail->IsFixed(helper->DurationVars()[t])
? AffineExpression(helper->DurationMin(t))
: AffineExpression(helper->DurationVars()[t]);
const AffineExpression demand = demands[t];
if (demand.var == kNoIntegerVariable &&
duration.var == kNoIntegerVariable) {
CHECK_GE(demand.constant, 0);
CHECK_GE(duration.constant, 0);
energies.emplace_back(demand.constant * duration.constant);
} else if (demand.var == kNoIntegerVariable) {
CHECK_GE(demand.constant, 0);
energies.push_back(duration);
energies.back().coeff *= demand.constant;
energies.back().constant *= demand.constant;
} else if (duration.var == kNoIntegerVariable) {
CHECK_GE(duration.constant, 0);
energies.push_back(demand);
energies.back().coeff *= duration.constant;
energies.back().constant *= duration.constant;
} else {
// The case where both demand and duration are variable should be rare.
//
// TODO(user): Handle when needed by creating an intermediate product
// variable equal to demand * duration. Note that because of the affine
// expression, we do need some custom code for this.
LOG(INFO)
<< "Overload checker with variable demand and varialbe duration "
"is currently not implemented. Skipping.";
return;
}
}
CumulativeEnergyConstraint* constraint =
new CumulativeEnergyConstraint(energies, capacity, integer_trail, helper);
constraint->RegisterWith(watcher);
model->TakeOwnership(constraint);
}
CumulativeEnergyConstraint::CumulativeEnergyConstraint(
std::vector<AffineExpression> energies, AffineExpression capacity,
IntegerTrail* integer_trail, SchedulingConstraintHelper* helper)
: energies_(std::move(energies)),
capacity_(capacity),
integer_trail_(integer_trail),
helper_(helper),
theta_tree_() {
const int num_tasks = helper_->NumTasks();
CHECK_EQ(energies_.size(), num_tasks);
task_to_start_event_.resize(num_tasks);
}
void CumulativeEnergyConstraint::RegisterWith(GenericLiteralWatcher* watcher) {
const int id = watcher->Register(this);
helper_->WatchAllTasks(id, watcher);
watcher->NotifyThatPropagatorMayNotReachFixedPointInOnePass(id);
}
bool CumulativeEnergyConstraint::Propagate() {
// This only uses one time direction, but the helper might be used elsewhere.
// TODO(user): just keep the current direction?
helper_->SetTimeDirection(true);
const IntegerValue capacity_max = integer_trail_->UpperBound(capacity_);
// TODO(user): force capacity_max >= 0, fail/remove optionals when 0.
if (capacity_max <= 0) return true;
// Set up theta tree.
start_event_task_time_.clear();
int num_events = 0;
for (const auto task_time : helper_->TaskByIncreasingStartMin()) {
const int task = task_time.task_index;
if (helper_->IsAbsent(task) ||
integer_trail_->UpperBound(energies_[task]) == 0) {
task_to_start_event_[task] = -1;
continue;
}
start_event_task_time_.emplace_back(task_time);
task_to_start_event_[task] = num_events;
num_events++;
}
start_event_is_present_.assign(num_events, false);
theta_tree_.Reset(num_events);
bool tree_has_mandatory_intervals = false;
// Main loop: insert tasks by increasing end_max, check for overloads.
for (const auto task_time :
::gtl::reversed_view(helper_->TaskByDecreasingEndMax())) {
const int current_task = task_time.task_index;
const IntegerValue current_end = task_time.time;
if (task_to_start_event_[current_task] == -1) continue;
// Add the current task to the tree.
{
const int current_event = task_to_start_event_[current_task];
const IntegerValue start_min = start_event_task_time_[current_event].time;
const bool is_present = helper_->IsPresent(current_task);
start_event_is_present_[current_event] = is_present;
if (is_present) {
tree_has_mandatory_intervals = true;
theta_tree_.AddOrUpdateEvent(
current_event, start_min * capacity_max,
integer_trail_->LowerBound(energies_[current_task]),
integer_trail_->UpperBound(energies_[current_task]));
} else {
theta_tree_.AddOrUpdateOptionalEvent(
current_event, start_min * capacity_max,
integer_trail_->UpperBound(energies_[current_task]));
}
}
if (tree_has_mandatory_intervals) {
// Find the critical interval.
const IntegerValue envelope = theta_tree_.GetEnvelope();
const int critical_event =
theta_tree_.GetMaxEventWithEnvelopeGreaterThan(envelope - 1);
const IntegerValue window_start =
start_event_task_time_[critical_event].time;
const IntegerValue window_end = current_end;
const IntegerValue window_size = window_end - window_start;
if (window_size == 0) continue;
const IntegerValue new_capacity_min =
CeilRatio(envelope - window_start * capacity_max, window_size);
// Push the new capacity min, note that this can fail if it go above the
// maximum capacity.
//
// TODO(user): We do not need the capacity max in the reason, but by using
// a lower one, we could maybe have propagated more the minimum capacity.
// investigate.
if (new_capacity_min > integer_trail_->LowerBound(capacity_)) {
helper_->ClearReason();
for (int event = critical_event; event < num_events; event++) {
if (start_event_is_present_[event]) {
const int task = start_event_task_time_[event].task_index;
helper_->AddPresenceReason(task);
if (energies_[task].var != kNoIntegerVariable) {
helper_->MutableIntegerReason()->push_back(
integer_trail_->LowerBoundAsLiteral(energies_[task].var));
}
helper_->AddStartMinReason(task, window_start);
helper_->AddEndMaxReason(task, window_end);
}
}
if (capacity_.var == kNoIntegerVariable) {
return helper_->ReportConflict();
} else {
if (!helper_->PushIntegerLiteral(
capacity_.GreaterOrEqual(new_capacity_min))) {
return false;
}
}
}
}
// Reduce energy of all tasks whose max energy would exceed an interval
// ending at current_end.
while (theta_tree_.GetOptionalEnvelope() > current_end * capacity_max) {
// Some task's max energy is too high, reduce its maximal energy.
// Explain with tasks present in the critical interval.
// If it is optional, it might get excluded, in that case,
// remove it from the tree.
// TODO(user): This could be done lazily.
// TODO(user): the same required task can have its energy pruned
// several times, making this algorithm O(n^2 log n). Is there a way
// to get the best pruning in one go? This looks like edge-finding not
// being able to converge in one pass, so it might not be easy.
helper_->ClearReason();
int critical_event;
int event_with_new_energy_max;
IntegerValue new_energy_max;
theta_tree_.GetEventsWithOptionalEnvelopeGreaterThan(
current_end * capacity_max, &critical_event,
&event_with_new_energy_max, &new_energy_max);
const IntegerValue window_start =
start_event_task_time_[critical_event].time;
// TODO(user): Improve window_end using envelope of critical event.
const IntegerValue window_end = current_end;
for (int event = critical_event; event < num_events; event++) {
if (start_event_is_present_[event]) {
if (event == event_with_new_energy_max) continue;
const int task = start_event_task_time_[event].task_index;
helper_->AddPresenceReason(task);
helper_->AddStartMinReason(task, window_start);
helper_->AddEndMaxReason(task, window_end);
if (energies_[task].var != kNoIntegerVariable) {
helper_->MutableIntegerReason()->push_back(
integer_trail_->LowerBoundAsLiteral(energies_[task].var));
}
}
}
if (capacity_.var != kNoIntegerVariable) {
helper_->MutableIntegerReason()->push_back(
integer_trail_->UpperBoundAsLiteral(capacity_.var));
}
const int task_with_new_energy_max =
start_event_task_time_[event_with_new_energy_max].task_index;
helper_->AddStartMinReason(task_with_new_energy_max, window_start);
helper_->AddEndMaxReason(task_with_new_energy_max, window_end);
if (new_energy_max <
integer_trail_->LowerBound(energies_[task_with_new_energy_max])) {
if (helper_->IsOptional(task_with_new_energy_max)) {
return helper_->PushTaskAbsence(task_with_new_energy_max);
} else {
return helper_->ReportConflict();
}
} else {
const IntegerLiteral deduction =
energies_[task_with_new_energy_max].LowerOrEqual(new_energy_max);
if (!helper_->PushIntegerLiteralIfTaskPresent(task_with_new_energy_max,
deduction)) {
return false;
}
}
if (helper_->IsPresent(task_with_new_energy_max)) {
theta_tree_.AddOrUpdateEvent(
task_to_start_event_[task_with_new_energy_max],
start_event_task_time_[event_with_new_energy_max].time *
capacity_max,
integer_trail_->LowerBound(energies_[task_with_new_energy_max]),
new_energy_max);
} else {
theta_tree_.RemoveEvent(event_with_new_energy_max);
}
}
}
return true;
}
} // namespace sat
} // namespace operations_research