forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuts.h
426 lines (391 loc) · 19 KB
/
cuts.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_CUTS_H_
#define OR_TOOLS_SAT_CUTS_H_
#include <utility>
#include <vector>
#include "ortools/base/int_type.h"
#include "ortools/sat/implied_bounds.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/linear_constraint_manager.h"
#include "ortools/sat/model.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
// A "cut" generator on a set of IntegerVariable.
//
// The generate_cuts() function will usually be called with the current LP
// optimal solution (but should work for any lp_values). Note that a
// CutGenerator should:
// - Only look at the lp_values positions that corresponds to its 'vars' or
// their negation.
// - Only add cuts in term of the same variables or their negation.
struct CutGenerator {
std::vector<IntegerVariable> vars;
std::function<void(const gtl::ITIVector<IntegerVariable, double>& lp_values,
LinearConstraintManager* manager)>
generate_cuts;
};
// Given an upper-bounded linear relation (sum terms <= ub), this algorithm
// inspects the integer variable appearing in the sum and try to replace each of
// them by a tight lower bound (>= coeff * binary + lb) using the implied bound
// repository. By tight, we mean that it will take the same value under the
// current LP solution.
//
// We use a class to reuse memory of the tmp terms.
class ImpliedBoundsProcessor {
public:
// We will only replace IntegerVariable appearing in lp_vars_.
ImpliedBoundsProcessor(absl::Span<const IntegerVariable> lp_vars_,
IntegerTrail* integer_trail,
ImpliedBounds* implied_bounds)
: lp_vars_(lp_vars_.begin(), lp_vars_.end()),
integer_trail_(integer_trail),
implied_bounds_(implied_bounds) {}
// Processes and updates the given cut.
void ProcessUpperBoundedConstraint(
const gtl::ITIVector<IntegerVariable, double>& lp_values,
LinearConstraint* cut) const;
// Same as ProcessUpperBoundedConstraint() but instead of just using
// var >= coeff * binary + lb we use var == slack + coeff * binary + lb where
// slack is a new temporary variable that we create.
//
// The new slack will be such that slack_infos[(slack - first_slack) / 2]
// contains its definition so that we can properly handle it in the cut
// generation and substitute it back later.
struct SlackInfo {
// This slack is equal to sum of terms + offset.
std::vector<std::pair<IntegerVariable, IntegerValue>> terms;
IntegerValue offset;
// The slack bounds and current lp_value.
IntegerValue lb = IntegerValue(0);
IntegerValue ub = IntegerValue(0);
double lp_value = 0.0;
};
void ProcessUpperBoundedConstraintWithSlackCreation(
IntegerVariable first_slack,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
LinearConstraint* cut, std::vector<SlackInfo>* slack_infos,
std::vector<LinearConstraint>* implied_bound_cuts) const;
// Only used for debugging.
//
// Substituting back the slack created by the function above should give
// exactly the same cut as the original one.
bool DebugSlack(IntegerVariable first_slack,
const LinearConstraint& initial_cut,
const LinearConstraint& cut,
const std::vector<SlackInfo>& info);
// Add a new variable that could be used in the new cuts.
void AddLpVariable(IntegerVariable var) { lp_vars_.insert(var); }
// Must be called before we process any constraints with a different
// lp_values or level zero bounds.
void ClearCache() const { cache_.clear(); }
private:
struct BestImpliedBoundInfo {
double bool_lp_value = 0.0;
double slack_lp_value = std::numeric_limits<double>::infinity();
bool is_positive;
IntegerValue bound_diff;
IntegerVariable bool_var = kNoIntegerVariable;
};
BestImpliedBoundInfo ComputeBestImpliedBound(
IntegerVariable var,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
std::vector<LinearConstraint>* implied_bound_cuts) const;
absl::flat_hash_set<IntegerVariable> lp_vars_;
mutable absl::flat_hash_map<IntegerVariable, BestImpliedBoundInfo> cache_;
// Data from the constructor.
IntegerTrail* integer_trail_;
ImpliedBounds* implied_bounds_;
// Temporary memory used by ProcessUpperBoundedConstraint().
mutable std::vector<std::pair<IntegerVariable, IntegerValue>> tmp_terms_;
};
// Visible for testing. Returns a function f on integers such that:
// - f is non-decreasing.
// - f is super-additive: f(a) + f(b) <= f(a + b)
// - 1 <= f(divisor) <= max_scaling
// - For all x, f(x * divisor) = x * f(divisor)
// - For all x, f(x * divisor + remainder) = x * f(divisor)
//
// Preconditions:
// - 0 <= remainder < divisor.
// - 1 <= max_scaling.
//
// This is used in IntegerRoundingCut() and is responsible for "strengthening"
// the cut. Just taking f(x) = x / divisor result in the non-strengthened cut
// and using any function that stricly dominate this one is better.
//
// Algorithm:
// - We first scale by a factor t so that rhs_remainder >= divisor / 2.
// - Then, if max_scaling == 2, we use the function described
// in "Strenghtening Chvatal-Gomory cuts and Gomory fractional cuts", Adam N.
// Letchfrod, Andrea Lodi.
// - Otherwise, we use a generalization of this which is a discretized version
// of the classical MIR rounding function that only take the value of the
// form "an_integer / max_scaling". As max_scaling goes to infinity, this
// converge to the real-valued MIR function.
//
// Note that for each value of max_scaling we will get a different function.
// And that there is no dominance relation between any of these functions. So
// it could be nice to try to generate a cut using different values of
// max_scaling.
IntegerValue GetFactorT(IntegerValue rhs_remainder, IntegerValue divisor,
IntegerValue max_t);
std::function<IntegerValue(IntegerValue)> GetSuperAdditiveRoundingFunction(
IntegerValue rhs_remainder, IntegerValue divisor, IntegerValue t,
IntegerValue max_scaling);
// Given an upper bounded linear constraint, this function tries to transform it
// to a valid cut that violate the given LP solution using integer rounding.
// Note that the returned cut might not always violate the LP solution, in which
// case it can be discarded.
//
// What this does is basically take the integer division of the constraint by an
// integer. If the coefficients where doubles, this would be the same as scaling
// the constraint and then rounding. We choose the coefficient of the most
// fractional variable (rescaled by its coefficient) as the divisor, but there
// are other possible alternatives.
//
// Note that if the constraint is tight under the given lp solution, and if
// there is a unique variable not at one of its bounds and fractional, then we
// are guaranteed to generate a cut that violate the current LP solution. This
// should be the case for Chvatal-Gomory base constraints modulo our loss of
// precision while doing exact integer computations.
//
// Precondition:
// - We assumes that the given initial constraint is tight using the given lp
// values. This could be relaxed, but for now it should always be the case, so
// we log a message and abort if not, to ease debugging.
// - The IntegerVariable of the cuts are not used here. We assumes that the
// first three vectors are in one to one correspondence with the initial order
// of the variable in the cut.
//
// TODO(user): There is a bunch of heuristic involved here, and we could spend
// more effort tunning them. In particular, one can try many heuristics and keep
// the best looking cut (or more than one). This is not on the critical code
// path, so we can spend more effort in finding good cuts.
struct RoundingOptions {
IntegerValue max_scaling = IntegerValue(60);
};
class IntegerRoundingCutHelper {
public:
void ComputeCut(RoundingOptions options, const std::vector<double>& lp_values,
const std::vector<IntegerValue>& lower_bounds,
const std::vector<IntegerValue>& upper_bounds,
LinearConstraint* cut);
private:
// The helper is just here to reuse the memory for these vectors.
std::vector<int> relevant_indices_;
std::vector<double> relevant_lp_values_;
std::vector<IntegerValue> relevant_coeffs_;
std::vector<IntegerValue> relevant_bound_diffs_;
std::vector<IntegerValue> divisors_;
std::vector<std::pair<int, IntegerValue>> adjusted_coeffs_;
std::vector<IntegerValue> remainders_;
std::vector<bool> change_sign_at_postprocessing_;
std::vector<IntegerValue> rs_;
std::vector<IntegerValue> best_rs_;
};
// If a variable is away from its upper bound by more than value 1.0, then it
// cannot be part of a cover that will violate the lp solution. This method
// returns a reduced constraint by removing such variables from the given
// constraint.
LinearConstraint GetPreprocessedLinearConstraint(
const LinearConstraint& constraint,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
const IntegerTrail& integer_trail);
// Returns true if sum of all the variables in the given constraint is less than
// or equal to constraint upper bound. This method assumes that all the
// coefficients are non negative.
bool ConstraintIsTriviallyTrue(const LinearConstraint& constraint,
const IntegerTrail& integer_trail);
// If the left variables in lp solution satisfies following inequality, we prove
// that there does not exist any knapsack cut which is violated by the solution.
// Let |Cmin| = smallest possible cover size.
// Let S = smallest (var_ub - lp_values[var]) first |Cmin| variables.
// Let cut lower bound = sum_(var in S)(var_ub - lp_values[var])
// For any cover,
// If cut lower bound >= 1
// ==> sum_(var in S)(var_ub - lp_values[var]) >= 1
// ==> sum_(var in cover)(var_ub - lp_values[var]) >= 1
// ==> The solution already satisfies cover. Since this is true for all covers,
// this method returns false in such cases.
// This method assumes that the constraint is preprocessed and has only non
// negative coefficients.
bool CanBeFilteredUsingCutLowerBound(
const LinearConstraint& preprocessed_constraint,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
const IntegerTrail& integer_trail);
// Struct to help compute upper bound for knapsack instance.
struct KnapsackItem {
double profit;
double weight;
bool operator>(const KnapsackItem& other) const {
return profit * other.weight > other.profit * weight;
}
};
// Gets upper bound on profit for knapsack instance by solving the linear
// relaxation.
double GetKnapsackUpperBound(std::vector<KnapsackItem> items, double capacity);
// Returns true if the linear relaxation upper bound for the knapsack instance
// shows that this constraint cannot be used to form a cut. This method assumes
// that all the coefficients are non negative.
bool CanBeFilteredUsingKnapsackUpperBound(
const LinearConstraint& constraint,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
const IntegerTrail& integer_trail);
// Returns true if the given constraint passes all the filters described above.
// This method assumes that the constraint is preprocessed and has only non
// negative coefficients.
bool CanFormValidKnapsackCover(
const LinearConstraint& preprocessed_constraint,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
const IntegerTrail& integer_trail);
// Converts the given constraint into canonical knapsack form (described
// below) and adds it to 'knapsack_constraints'.
// Canonical knapsack form:
// - Constraint has finite upper bound.
// - All coefficients are positive.
// For constraint with finite lower bound, this method also adds the negation of
// the given constraint after converting it to canonical knapsack form.
void ConvertToKnapsackForm(const LinearConstraint& constraint,
std::vector<LinearConstraint>* knapsack_constraints,
IntegerTrail* integer_trail);
// Returns true if the cut is lifted. Lifting procedure is described below.
//
// First we decide a lifting sequence for the binary variables which are not
// already in cut. We lift the cut for each lifting candidate one by one.
//
// Given the original constraint where the lifting candidate is fixed to one, we
// compute the maximum value the cut can take and still be feasible using a
// knapsack problem. We can then lift the variable in the cut using the
// difference between the cut upper bound and this maximum value.
bool LiftKnapsackCut(
const LinearConstraint& constraint,
const gtl::ITIVector<IntegerVariable, double>& lp_values,
const std::vector<IntegerValue>& cut_vars_original_coefficients,
const IntegerTrail& integer_trail, TimeLimit* time_limit,
LinearConstraint* cut);
// A cut generator that creates knpasack cover cuts.
//
// For a constraint of type
// \sum_{i=1..n}(a_i * x_i) <= b
// where x_i are integer variables with upper bound u_i, a cover of size k is a
// subset C of {1 , .. , n} such that \sum_{c \in C}(a_c * u_c) > b.
//
// A knapsack cover cut is a constraint of the form
// \sum_{c \in C}(u_c - x_c) >= 1
// which is equivalent to \sum_{c \in C}(x_c) <= \sum_{c \in C}(u_c) - 1.
// In other words, in a feasible solution, at least some of the variables do
// not take their maximum value.
//
// If all x_i are binary variables then the cover cut becomes
// \sum_{c \in C}(x_c) <= |C| - 1.
//
// The major difficulty for generating Knapsack cover cuts is finding a minimal
// cover set C that cut a given floating point solution. There are many ways to
// heuristically generate the cover but the following method that uses a
// solution of the LP relaxation of the constraint works the best.
//
// Look at a given linear relaxation solution for the integer problem x'
// and try to solve the following knapsack problem:
// Minimize \sum_{i=1..n}(z_i * (u_i - x_i')),
// such that \sum_{i=1..n}(a_i * u_i * z_i) > b,
// where z_i is a binary decision variable and x_i' are values of the variables
// in the given relaxation solution x'. If the objective of the optimal solution
// of this problem is less than 1, this algorithm does not generate any cuts.
// Otherwise, it adds a knapsack cover cut in the form
// \sum_{i=1..n}(z_i' * x_i) <= cb,
// where z_i' is the value of z_i in the optimal solution of the above
// problem and cb is the upper bound for the cut constraint. Note that the above
// problem can be converted into a standard kanpsack form by replacing z_i by 1
// - y_i. In that case the problem becomes
// Maximize \sum_{i=1..n}((u_i - x_i') * (y_i - 1)),
// such that
// \sum_{i=1..n}(a_i * u_i * y_i) <= \sum_{i=1..n}(a_i * u_i) - b - 1.
//
// Solving this knapsack instance would help us find the smallest cover with
// maximum LP violation.
//
// Cut strengthning:
// Let lambda = \sum_{c \in C}(a_c * u_c) - b and max_coeff = \max_{c
// \in C}(a_c), then cut can be strengthened as
// \sum_{c \in C}(u_c - x_c) >= ceil(lambda / max_coeff)
//
// For further information about knapsack cover cuts see
// A. Atamtürk, Cover and Pack Inequalities for (Mixed) Integer Programming
// Annals of Operations Research Volume 139, Issue 1 , pp 21-38, 2005.
// TODO(user): Implement cut lifting.
CutGenerator CreateKnapsackCoverCutGenerator(
const std::vector<LinearConstraint>& base_constraints,
const std::vector<IntegerVariable>& vars, Model* model);
// A cut generator for z = x * y (x and y >= 0).
CutGenerator CreatePositiveMultiplicationCutGenerator(IntegerVariable z,
IntegerVariable x,
IntegerVariable y,
Model* model);
// A cut generator for y = x ^ 2 (x >= 0).
// It will dynamically add a linear inequality to push y closer to the parabola.
CutGenerator CreateSquareCutGenerator(IntegerVariable y, IntegerVariable x,
Model* model);
// A cut generator for all_diff(xi). Let the united domain of all xi be D. Sum
// of any k-sized subset of xi need to be greater or equal to the sum of
// smallest k values in D and lesser or equal to the sum of largest k values in
// D. The cut generator first sorts the variables based on LP values and adds
// cuts of the form described above if they are violated by lp solution. Note
// that all the fixed variables are ignored while generating cuts.
CutGenerator CreateAllDifferentCutGenerator(
const std::vector<IntegerVariable>& vars, Model* model);
// Consider the Lin Max constraint with d expressions and n variables in the
// form: target = max {exprs[k] = Sum (wki * xi + bk)}. k in {1,..,d}.
// Li = lower bound of xi
// Ui = upper bound of xi.
// Let zk be in {0,1} for all k in {1,..,d}.
// The target = exprs[k] when zk = 1.
//
// The following is a valid linearization for Lin Max.
// target >= exprs[k], for all k in {1,..,d}
// target <= Sum (wli * xi) + Sum((Nlk + bk) * zk), for all l in {1,..,d}
// Where Nlk is a large number defined as:
// Nlk = Sum (max((wki - wli)*Li, (wki - wli)*Ui))
// = Sum (max corner difference for variable i, target expr l, max expr k)
//
// Consider a partition of variables xi into set {1,..,d} as I.
// i.e. I(i) = j means xi is mapped to jth index.
// The following inequality is valid and sharp cut for the lin max constraint
// described above.
//
// target <= Sum(i=1..n)(wI(i)i * xi + Sum(k=1..d)(MPlusCoefficient_ki * zk))
// + Sum(k=1..d)(bk * zk) ,
// Where MPlusCoefficient_ki = max((wki - wI(i)i) * Li,
// (wki - wI(i)i) * Ui)
// = max corner difference for variable i,
// target expr I(i), max expr k.
//
// For detailed proof of validity, refer
// Reference: "Strong mixed-integer programming formulations for trained neural
// networks" by Ross Anderson et. (https://arxiv.org/pdf/1811.01988.pdf).
//
// In the cut generator, we compute the most violated partition I by computing
// the rhs value (wI(i)i * lp_value(xi) + Sum(k=1..d)(MPlusCoefficient_ki * zk))
// for each variable for each partition index. We choose the partition index
// that gives lowest rhs value for a given variable.
//
// Note: This cut generator requires all expressions to contain only positive
// vars.
CutGenerator CreateLinMaxCutGenerator(
const IntegerVariable target, const std::vector<LinearExpression>& exprs,
const std::vector<IntegerVariable>& z_vars, Model* model);
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_CUTS_H_