forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteger.cc
1898 lines (1690 loc) · 73.4 KB
/
integer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/integer.h"
#include <algorithm>
#include <queue>
#include <type_traits>
#include "ortools/base/iterator_adaptors.h"
#include "ortools/base/stl_util.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
// var * coeff + constant >= bound.
IntegerLiteral AffineExpression::GreaterOrEqual(IntegerValue bound) const {
CHECK_NE(var, kNoIntegerVariable);
CHECK_GT(coeff, 0);
return IntegerLiteral::GreaterOrEqual(var,
CeilRatio(bound - constant, coeff));
}
// var * coeff + constant <= bound.
IntegerLiteral AffineExpression::LowerOrEqual(IntegerValue bound) const {
CHECK_NE(var, kNoIntegerVariable);
CHECK_GT(coeff, 0);
return IntegerLiteral::LowerOrEqual(var, FloorRatio(bound - constant, coeff));
}
std::vector<IntegerVariable> NegationOf(
const std::vector<IntegerVariable>& vars) {
std::vector<IntegerVariable> result(vars.size());
for (int i = 0; i < vars.size(); ++i) {
result[i] = NegationOf(vars[i]);
}
return result;
}
void IntegerEncoder::FullyEncodeVariable(IntegerVariable var) {
if (VariableIsFullyEncoded(var)) return;
CHECK_EQ(0, sat_solver_->CurrentDecisionLevel());
CHECK(!(*domains_)[var].IsEmpty()); // UNSAT. We don't deal with that here.
CHECK_LT((*domains_)[var].Size(), 100000)
<< "Domain too large for full encoding.";
// TODO(user): Maybe we can optimize the literal creation order and their
// polarity as our default SAT heuristics initially depends on this.
//
// TODO(user): Currently, in some corner cases,
// GetOrCreateLiteralAssociatedToEquality() might trigger some propagation
// that update the domain of var, so we need to cache the values to not read
// garbage. Note that it is okay to call the function on values no longer
// reachable, as this will just do nothing.
tmp_values_.clear();
for (const ClosedInterval interval : (*domains_)[var]) {
for (IntegerValue v(interval.start); v <= interval.end; ++v) {
tmp_values_.push_back(v);
}
}
for (const IntegerValue v : tmp_values_) {
GetOrCreateLiteralAssociatedToEquality(var, v);
}
// Mark var and Negation(var) as fully encoded.
CHECK_LT(GetPositiveOnlyIndex(var), is_fully_encoded_.size());
CHECK(!equality_by_var_[GetPositiveOnlyIndex(var)].empty());
is_fully_encoded_[GetPositiveOnlyIndex(var)] = true;
}
bool IntegerEncoder::VariableIsFullyEncoded(IntegerVariable var) const {
const PositiveOnlyIndex index = GetPositiveOnlyIndex(var);
if (index >= is_fully_encoded_.size()) return false;
// Once fully encoded, the status never changes.
if (is_fully_encoded_[index]) return true;
if (!VariableIsPositive(var)) var = PositiveVariable(var);
// TODO(user): Cache result as long as equality_by_var_[index] is unchanged?
// It might not be needed since if the variable is not fully encoded, then
// PartialDomainEncoding() will filter unreachable values, and so the size
// check will be false until further value have been encoded.
const int64 initial_domain_size = (*domains_)[var].Size();
if (equality_by_var_[index].size() < initial_domain_size) return false;
// This cleans equality_by_var_[index] as a side effect and in particular,
// sorts it by values.
PartialDomainEncoding(var);
// TODO(user): Comparing the size might be enough, but we want to be always
// valid even if either (*domains_[var]) or PartialDomainEncoding(var) are
// not properly synced because the propagation is not finished.
const auto& ref = equality_by_var_[index];
int i = 0;
for (const ClosedInterval interval : (*domains_)[var]) {
for (int64 v = interval.start; v <= interval.end; ++v) {
if (i < ref.size() && v == ref[i].value) {
i++;
}
}
}
if (i == ref.size()) {
is_fully_encoded_[index] = true;
}
return is_fully_encoded_[index];
}
std::vector<IntegerEncoder::ValueLiteralPair>
IntegerEncoder::FullDomainEncoding(IntegerVariable var) const {
CHECK(VariableIsFullyEncoded(var));
return PartialDomainEncoding(var);
}
std::vector<IntegerEncoder::ValueLiteralPair>
IntegerEncoder::PartialDomainEncoding(IntegerVariable var) const {
CHECK_EQ(sat_solver_->CurrentDecisionLevel(), 0);
const PositiveOnlyIndex index = GetPositiveOnlyIndex(var);
if (index >= equality_by_var_.size()) return {};
int new_size = 0;
std::vector<ValueLiteralPair>& ref = equality_by_var_[index];
for (int i = 0; i < ref.size(); ++i) {
const ValueLiteralPair pair = ref[i];
if (sat_solver_->Assignment().LiteralIsFalse(pair.literal)) continue;
if (sat_solver_->Assignment().LiteralIsTrue(pair.literal)) {
ref.clear();
ref.push_back(pair);
new_size = 1;
break;
}
ref[new_size++] = pair;
}
ref.resize(new_size);
std::sort(ref.begin(), ref.end());
std::vector<IntegerEncoder::ValueLiteralPair> result = ref;
if (!VariableIsPositive(var)) {
std::reverse(result.begin(), result.end());
for (ValueLiteralPair& ref : result) ref.value = -ref.value;
}
return result;
}
// Note that by not inserting the literal in "order" we can in the worst case
// use twice as much implication (2 by literals) instead of only one between
// consecutive literals.
void IntegerEncoder::AddImplications(
const std::map<IntegerValue, Literal>& map,
std::map<IntegerValue, Literal>::const_iterator it,
Literal associated_lit) {
if (!add_implications_) return;
DCHECK_EQ(it->second, associated_lit);
// Literal(after) => associated_lit
auto after_it = it;
++after_it;
if (after_it != map.end()) {
if (sat_solver_->CurrentDecisionLevel() == 0) {
sat_solver_->AddBinaryClause(after_it->second.Negated(), associated_lit);
} else {
sat_solver_->AddBinaryClauseDuringSearch(after_it->second.Negated(),
associated_lit);
}
}
// associated_lit => Literal(before)
if (it != map.begin()) {
auto before_it = it;
--before_it;
if (sat_solver_->CurrentDecisionLevel() == 0) {
sat_solver_->AddBinaryClause(associated_lit.Negated(), before_it->second);
} else {
sat_solver_->AddBinaryClauseDuringSearch(associated_lit.Negated(),
before_it->second);
}
}
}
void IntegerEncoder::AddAllImplicationsBetweenAssociatedLiterals() {
CHECK_EQ(0, sat_solver_->CurrentDecisionLevel());
add_implications_ = true;
for (const std::map<IntegerValue, Literal>& encoding : encoding_by_var_) {
LiteralIndex previous = kNoLiteralIndex;
for (const auto value_literal : encoding) {
const Literal lit = value_literal.second;
if (previous != kNoLiteralIndex) {
// lit => previous.
sat_solver_->AddBinaryClause(lit.Negated(), Literal(previous));
}
previous = lit.Index();
}
}
}
std::pair<IntegerLiteral, IntegerLiteral> IntegerEncoder::Canonicalize(
IntegerLiteral i_lit) const {
const IntegerVariable var(i_lit.var);
IntegerValue after(i_lit.bound);
IntegerValue before(i_lit.bound - 1);
CHECK_GE(before, (*domains_)[var].Min());
CHECK_LE(after, (*domains_)[var].Max());
int64 previous = kint64min;
for (const ClosedInterval& interval : (*domains_)[var]) {
if (before > previous && before < interval.start) before = previous;
if (after > previous && after < interval.start) after = interval.start;
if (after <= interval.end) break;
previous = interval.end;
}
return {IntegerLiteral::GreaterOrEqual(var, after),
IntegerLiteral::LowerOrEqual(var, before)};
}
Literal IntegerEncoder::GetOrCreateAssociatedLiteral(IntegerLiteral i_lit) {
if (i_lit.bound <= (*domains_)[i_lit.var].Min()) {
return GetTrueLiteral();
}
if (i_lit.bound > (*domains_)[i_lit.var].Max()) {
return GetFalseLiteral();
}
const auto canonicalization = Canonicalize(i_lit);
const IntegerLiteral new_lit = canonicalization.first;
const LiteralIndex index = GetAssociatedLiteral(new_lit);
if (index != kNoLiteralIndex) return Literal(index);
const LiteralIndex n_index = GetAssociatedLiteral(canonicalization.second);
if (n_index != kNoLiteralIndex) return Literal(n_index).Negated();
++num_created_variables_;
const Literal literal(sat_solver_->NewBooleanVariable(), true);
AssociateToIntegerLiteral(literal, new_lit);
// TODO(user): on some problem this happens. We should probably make sure that
// we don't create extra fixed Boolean variable for no reason.
if (sat_solver_->Assignment().LiteralIsAssigned(literal)) {
VLOG(1) << "Created a fixed literal for no reason!";
}
return literal;
}
namespace {
std::pair<PositiveOnlyIndex, IntegerValue> PositiveVarKey(IntegerVariable var,
IntegerValue value) {
return std::make_pair(GetPositiveOnlyIndex(var),
VariableIsPositive(var) ? value : -value);
}
} // namespace
LiteralIndex IntegerEncoder::GetAssociatedEqualityLiteral(
IntegerVariable var, IntegerValue value) const {
const auto it =
equality_to_associated_literal_.find(PositiveVarKey(var, value));
if (it != equality_to_associated_literal_.end()) {
return it->second.Index();
}
return kNoLiteralIndex;
}
Literal IntegerEncoder::GetOrCreateLiteralAssociatedToEquality(
IntegerVariable var, IntegerValue value) {
{
const auto it =
equality_to_associated_literal_.find(PositiveVarKey(var, value));
if (it != equality_to_associated_literal_.end()) {
return it->second;
}
}
// Check for trivial true/false literal to avoid creating variable for no
// reasons.
const Domain& domain = (*domains_)[var];
if (!domain.Contains(value.value())) return GetFalseLiteral();
if (value == domain.Min() && value == domain.Max()) {
AssociateToIntegerEqualValue(GetTrueLiteral(), var, value);
return GetTrueLiteral();
}
++num_created_variables_;
const Literal literal(sat_solver_->NewBooleanVariable(), true);
AssociateToIntegerEqualValue(literal, var, value);
// TODO(user): this happens on some problem. We should probably
// make sure that we don't create extra fixed Boolean variable for no reason.
// Note that here we could detect the case before creating the literal. The
// initial domain didn't contain it, but maybe the one of (>= value) or (<=
// value) is false?
if (sat_solver_->Assignment().LiteralIsAssigned(literal)) {
VLOG(1) << "Created a fixed literal for no reason!";
}
return literal;
}
void IntegerEncoder::AssociateToIntegerLiteral(Literal literal,
IntegerLiteral i_lit) {
const auto& domain = (*domains_)[i_lit.var];
const IntegerValue min(domain.Min());
const IntegerValue max(domain.Max());
if (i_lit.bound <= min) {
sat_solver_->AddUnitClause(literal);
} else if (i_lit.bound > max) {
sat_solver_->AddUnitClause(literal.Negated());
} else {
const auto pair = Canonicalize(i_lit);
HalfAssociateGivenLiteral(pair.first, literal);
HalfAssociateGivenLiteral(pair.second, literal.Negated());
// Detect the case >= max or <= min and properly register them. Note that
// both cases will happen at the same time if there is just two possible
// value in the domain.
if (pair.first.bound == max) {
AssociateToIntegerEqualValue(literal, i_lit.var, max);
}
if (-pair.second.bound == min) {
AssociateToIntegerEqualValue(literal.Negated(), i_lit.var, min);
}
}
}
void IntegerEncoder::AssociateToIntegerEqualValue(Literal literal,
IntegerVariable var,
IntegerValue value) {
// Detect literal view. Note that the same literal can be associated to more
// than one variable, and thus already have a view. We don't change it in
// this case.
const Domain& domain = (*domains_)[var];
if (value == 1 && domain.Min() >= 0 && domain.Max() <= 1) {
if (literal.Index() >= literal_view_.size()) {
literal_view_.resize(literal.Index().value() + 1, kNoIntegerVariable);
literal_view_[literal.Index()] = var;
} else if (literal_view_[literal.Index()] == kNoIntegerVariable) {
literal_view_[literal.Index()] = var;
}
}
if (value == -1 && domain.Min() >= -1 && domain.Max() <= 0) {
if (literal.Index() >= literal_view_.size()) {
literal_view_.resize(literal.Index().value() + 1, kNoIntegerVariable);
literal_view_[literal.Index()] = NegationOf(var);
} else if (literal_view_[literal.Index()] == kNoIntegerVariable) {
literal_view_[literal.Index()] = NegationOf(var);
}
}
// We use the "do not insert if present" behavior of .insert() to do just one
// lookup.
const auto insert_result = equality_to_associated_literal_.insert(
{PositiveVarKey(var, value), literal});
if (!insert_result.second) {
// If this key is already associated, make the two literals equal.
const Literal representative = insert_result.first->second;
if (representative != literal) {
DCHECK_EQ(sat_solver_->CurrentDecisionLevel(), 0);
sat_solver_->AddBinaryClause(literal, representative.Negated());
sat_solver_->AddBinaryClause(literal.Negated(), representative);
}
return;
}
// Fix literal for value outside the domain.
if (!domain.Contains(value.value())) {
sat_solver_->AddUnitClause(literal.Negated());
return;
}
// Update equality_by_var. Note that due to the
// equality_to_associated_literal_ hash table, there should never be any
// duplicate values for a given variable.
const PositiveOnlyIndex index = GetPositiveOnlyIndex(var);
if (index >= equality_by_var_.size()) {
equality_by_var_.resize(index.value() + 1);
is_fully_encoded_.resize(index.value() + 1);
}
equality_by_var_[index].push_back(
ValueLiteralPair(VariableIsPositive(var) ? value : -value, literal));
// Fix literal for constant domain.
if (value == domain.Min() && value == domain.Max()) {
sat_solver_->AddUnitClause(literal);
return;
}
const IntegerLiteral ge = IntegerLiteral::GreaterOrEqual(var, value);
const IntegerLiteral le = IntegerLiteral::LowerOrEqual(var, value);
// Special case for the first and last value.
if (value == domain.Min()) {
// Note that this will recursively call AssociateToIntegerEqualValue() but
// since equality_to_associated_literal_[] is now set, the recursion will
// stop there. When a domain has just 2 values, this allows to call just
// once AssociateToIntegerEqualValue() and also associate the other value to
// the negation of the given literal.
AssociateToIntegerLiteral(literal, le);
return;
}
if (value == domain.Max()) {
AssociateToIntegerLiteral(literal, ge);
return;
}
// (var == value) <=> (var >= value) and (var <= value).
const Literal a(GetOrCreateAssociatedLiteral(ge));
const Literal b(GetOrCreateAssociatedLiteral(le));
sat_solver_->AddBinaryClause(a, literal.Negated());
sat_solver_->AddBinaryClause(b, literal.Negated());
sat_solver_->AddProblemClause({a.Negated(), b.Negated(), literal});
// Update reverse encoding.
const int new_size = 1 + literal.Index().value();
if (new_size > full_reverse_encoding_.size()) {
full_reverse_encoding_.resize(new_size);
}
full_reverse_encoding_[literal.Index()].push_back(le);
full_reverse_encoding_[literal.Index()].push_back(ge);
}
// TODO(user): The hard constraints we add between associated literals seems to
// work for optional variables, but I am not 100% sure why!! I think it works
// because these literals can only appear in a conflict if the presence literal
// of the optional variables is true.
void IntegerEncoder::HalfAssociateGivenLiteral(IntegerLiteral i_lit,
Literal literal) {
// Resize reverse encoding.
const int new_size = 1 + literal.Index().value();
if (new_size > reverse_encoding_.size()) {
reverse_encoding_.resize(new_size);
}
if (new_size > full_reverse_encoding_.size()) {
full_reverse_encoding_.resize(new_size);
}
// Associate the new literal to i_lit.
if (i_lit.var >= encoding_by_var_.size()) {
encoding_by_var_.resize(i_lit.var.value() + 1);
}
auto& var_encoding = encoding_by_var_[i_lit.var];
auto insert_result = var_encoding.insert({i_lit.bound, literal});
if (insert_result.second) { // New item.
AddImplications(var_encoding, insert_result.first, literal);
if (sat_solver_->Assignment().LiteralIsTrue(literal)) {
CHECK_EQ(sat_solver_->CurrentDecisionLevel(), 0);
newly_fixed_integer_literals_.push_back(i_lit);
}
// TODO(user): do that for the other branch too?
reverse_encoding_[literal.Index()].push_back(i_lit);
full_reverse_encoding_[literal.Index()].push_back(i_lit);
} else {
const Literal associated(insert_result.first->second);
if (associated != literal) {
DCHECK_EQ(sat_solver_->CurrentDecisionLevel(), 0);
sat_solver_->AddBinaryClause(literal, associated.Negated());
sat_solver_->AddBinaryClause(literal.Negated(), associated);
}
}
}
bool IntegerEncoder::LiteralIsAssociated(IntegerLiteral i) const {
if (i.var >= encoding_by_var_.size()) return false;
const std::map<IntegerValue, Literal>& encoding = encoding_by_var_[i.var];
return encoding.find(i.bound) != encoding.end();
}
LiteralIndex IntegerEncoder::GetAssociatedLiteral(IntegerLiteral i) const {
if (i.var >= encoding_by_var_.size()) return kNoLiteralIndex;
const std::map<IntegerValue, Literal>& encoding = encoding_by_var_[i.var];
const auto result = encoding.find(i.bound);
if (result == encoding.end()) return kNoLiteralIndex;
return result->second.Index();
}
LiteralIndex IntegerEncoder::SearchForLiteralAtOrBefore(
IntegerLiteral i, IntegerValue* bound) const {
// We take the element before the upper_bound() which is either the encoding
// of i if it already exists, or the encoding just before it.
if (i.var >= encoding_by_var_.size()) return kNoLiteralIndex;
const std::map<IntegerValue, Literal>& encoding = encoding_by_var_[i.var];
auto after_it = encoding.upper_bound(i.bound);
if (after_it == encoding.begin()) return kNoLiteralIndex;
--after_it;
*bound = after_it->first;
return after_it->second.Index();
}
bool IntegerTrail::Propagate(Trail* trail) {
const int level = trail->CurrentDecisionLevel();
for (ReversibleInterface* rev : reversible_classes_) rev->SetLevel(level);
// Make sure that our internal "integer_search_levels_" size matches the
// sat decision levels. At the level zero, integer_search_levels_ should
// be empty.
if (level > integer_search_levels_.size()) {
integer_search_levels_.push_back(integer_trail_.size());
reason_decision_levels_.push_back(literals_reason_starts_.size());
CHECK_EQ(trail->CurrentDecisionLevel(), integer_search_levels_.size());
}
// This is used to map any integer literal out of the initial variable domain
// into one that use one of the domain value.
var_to_current_lb_interval_index_.SetLevel(level);
// This is required because when loading a model it is possible that we add
// (literal <-> integer literal) associations for literals that have already
// been propagated here. This often happens when the presolve is off
// and many variables are fixed.
//
// TODO(user): refactor the interaction IntegerTrail <-> IntegerEncoder so
// that we can just push right away such literal. Unfortunately, this is is
// a big chunck of work.
if (level == 0) {
for (const IntegerLiteral i_lit : encoder_->NewlyFixedIntegerLiterals()) {
if (IsCurrentlyIgnored(i_lit.var)) continue;
if (!Enqueue(i_lit, {}, {})) return false;
}
encoder_->ClearNewlyFixedIntegerLiterals();
}
// Process all the "associated" literals and Enqueue() the corresponding
// bounds.
while (propagation_trail_index_ < trail->Index()) {
const Literal literal = (*trail)[propagation_trail_index_++];
for (const IntegerLiteral i_lit : encoder_->GetIntegerLiterals(literal)) {
if (IsCurrentlyIgnored(i_lit.var)) continue;
// The reason is simply the associated literal.
if (!EnqueueAssociatedIntegerLiteral(i_lit, literal)) {
return false;
}
}
}
return true;
}
void IntegerTrail::Untrail(const Trail& trail, int literal_trail_index) {
++num_untrails_;
const int level = trail.CurrentDecisionLevel();
for (ReversibleInterface* rev : reversible_classes_) rev->SetLevel(level);
var_to_current_lb_interval_index_.SetLevel(level);
propagation_trail_index_ =
std::min(propagation_trail_index_, literal_trail_index);
// Note that if a conflict was detected before Propagate() of this class was
// even called, it is possible that there is nothing to backtrack.
if (level >= integer_search_levels_.size()) return;
const int target = integer_search_levels_[level];
integer_search_levels_.resize(level);
CHECK_GE(target, vars_.size());
CHECK_LE(target, integer_trail_.size());
for (int index = integer_trail_.size() - 1; index >= target; --index) {
const TrailEntry& entry = integer_trail_[index];
if (entry.var < 0) continue; // entry used by EnqueueLiteral().
vars_[entry.var].current_trail_index = entry.prev_trail_index;
vars_[entry.var].current_bound =
integer_trail_[entry.prev_trail_index].bound;
}
integer_trail_.resize(target);
// Clear reason.
const int old_size = reason_decision_levels_[level];
reason_decision_levels_.resize(level);
if (old_size < literals_reason_starts_.size()) {
literals_reason_buffer_.resize(literals_reason_starts_[old_size]);
const int bound_start = bounds_reason_starts_[old_size];
bounds_reason_buffer_.resize(bound_start);
if (bound_start < trail_index_reason_buffer_.size()) {
trail_index_reason_buffer_.resize(bound_start);
}
literals_reason_starts_.resize(old_size);
bounds_reason_starts_.resize(old_size);
}
}
void IntegerTrail::ReserveSpaceForNumVariables(int num_vars) {
// Because we always create both a variable and its negation.
const int size = 2 * num_vars;
vars_.reserve(size);
is_ignored_literals_.reserve(size);
integer_trail_.reserve(size);
domains_->reserve(size);
var_trail_index_cache_.reserve(size);
tmp_var_to_trail_index_in_queue_.reserve(size);
}
IntegerVariable IntegerTrail::AddIntegerVariable(IntegerValue lower_bound,
IntegerValue upper_bound) {
DCHECK_GE(lower_bound, kMinIntegerValue);
DCHECK_LE(lower_bound, kMaxIntegerValue);
DCHECK_GE(upper_bound, kMinIntegerValue);
DCHECK_LE(upper_bound, kMaxIntegerValue);
DCHECK(integer_search_levels_.empty());
DCHECK_EQ(vars_.size(), integer_trail_.size());
const IntegerVariable i(vars_.size());
is_ignored_literals_.push_back(kNoLiteralIndex);
vars_.push_back({lower_bound, static_cast<int>(integer_trail_.size())});
integer_trail_.push_back({lower_bound, i});
domains_->push_back(Domain(lower_bound.value(), upper_bound.value()));
// TODO(user): the is_ignored_literals_ Booleans are currently always the same
// for a variable and its negation. So it may be better not to store it twice
// so that we don't have to be careful when setting them.
CHECK_EQ(NegationOf(i).value(), vars_.size());
is_ignored_literals_.push_back(kNoLiteralIndex);
vars_.push_back({-upper_bound, static_cast<int>(integer_trail_.size())});
integer_trail_.push_back({-upper_bound, NegationOf(i)});
domains_->push_back(Domain(-upper_bound.value(), -lower_bound.value()));
var_trail_index_cache_.resize(vars_.size(), integer_trail_.size());
tmp_var_to_trail_index_in_queue_.resize(vars_.size(), 0);
for (SparseBitset<IntegerVariable>* w : watchers_) {
w->Resize(NumIntegerVariables());
}
return i;
}
IntegerVariable IntegerTrail::AddIntegerVariable(const Domain& domain) {
CHECK(!domain.IsEmpty());
const IntegerVariable var = AddIntegerVariable(IntegerValue(domain.Min()),
IntegerValue(domain.Max()));
CHECK(UpdateInitialDomain(var, domain));
return var;
}
const Domain& IntegerTrail::InitialVariableDomain(IntegerVariable var) const {
return (*domains_)[var];
}
bool IntegerTrail::UpdateInitialDomain(IntegerVariable var, Domain domain) {
CHECK_EQ(trail_->CurrentDecisionLevel(), 0);
const Domain& old_domain = InitialVariableDomain(var);
domain = domain.IntersectionWith(old_domain);
if (old_domain == domain) return true;
if (domain.IsEmpty()) return false;
(*domains_)[var] = domain;
(*domains_)[NegationOf(var)] = domain.Negation();
if (domain.NumIntervals() > 1) {
var_to_current_lb_interval_index_.Set(var, 0);
var_to_current_lb_interval_index_.Set(NegationOf(var), 0);
}
// TODO(user): That works, but it might be better to simply update the
// bounds here directly. This is because these function might call again
// UpdateInitialDomain(), and we will abort after realizing that the domain
// didn't change this time.
CHECK(Enqueue(IntegerLiteral::GreaterOrEqual(var, IntegerValue(domain.Min())),
{}, {}));
CHECK(Enqueue(IntegerLiteral::LowerOrEqual(var, IntegerValue(domain.Max())),
{}, {}));
// Set to false excluded literals.
int i = 0;
int num_fixed = 0;
for (const IntegerEncoder::ValueLiteralPair pair :
encoder_->PartialDomainEncoding(var)) {
while (i < domain.NumIntervals() && pair.value > domain[i].end) ++i;
if (i == domain.NumIntervals() || pair.value < domain[i].start) {
++num_fixed;
if (trail_->Assignment().LiteralIsTrue(pair.literal)) return false;
if (!trail_->Assignment().LiteralIsFalse(pair.literal)) {
trail_->EnqueueWithUnitReason(pair.literal.Negated());
}
}
}
if (num_fixed > 0) {
VLOG(1)
<< "Domain intersection fixed " << num_fixed
<< " equality literal corresponding to values outside the new domain.";
}
return true;
}
IntegerVariable IntegerTrail::GetOrCreateConstantIntegerVariable(
IntegerValue value) {
auto insert = constant_map_.insert(std::make_pair(value, kNoIntegerVariable));
if (insert.second) { // new element.
const IntegerVariable new_var = AddIntegerVariable(value, value);
insert.first->second = new_var;
if (value != 0) {
// Note that this might invalidate insert.first->second.
gtl::InsertOrDie(&constant_map_, -value, NegationOf(new_var));
}
return new_var;
}
return insert.first->second;
}
int IntegerTrail::NumConstantVariables() const {
// The +1 if for the special key zero (the only case when we have an odd
// number of entries).
return (constant_map_.size() + 1) / 2;
}
int IntegerTrail::FindTrailIndexOfVarBefore(IntegerVariable var,
int threshold) const {
// Optimization. We assume this is only called when computing a reason, so we
// can ignore this trail_index if we already need a more restrictive reason
// for this var.
const int index_in_queue = tmp_var_to_trail_index_in_queue_[var];
if (threshold <= index_in_queue) {
if (index_in_queue != kint32max) has_dependency_ = true;
return -1;
}
DCHECK_GE(threshold, vars_.size());
int trail_index = vars_[var].current_trail_index;
// Check the validity of the cached index and use it if possible.
if (trail_index > threshold) {
const int cached_index = var_trail_index_cache_[var];
if (cached_index >= threshold && cached_index < trail_index &&
integer_trail_[cached_index].var == var) {
trail_index = cached_index;
}
}
while (trail_index >= threshold) {
trail_index = integer_trail_[trail_index].prev_trail_index;
if (trail_index >= var_trail_index_cache_threshold_) {
var_trail_index_cache_[var] = trail_index;
}
}
const int num_vars = vars_.size();
return trail_index < num_vars ? -1 : trail_index;
}
int IntegerTrail::FindLowestTrailIndexThatExplainBound(
IntegerLiteral i_lit) const {
DCHECK_LE(i_lit.bound, vars_[i_lit.var].current_bound);
if (i_lit.bound <= LevelZeroLowerBound(i_lit.var)) return -1;
int trail_index = vars_[i_lit.var].current_trail_index;
// Check the validity of the cached index and use it if possible. This caching
// mechanism is important in case of long chain of propagation on the same
// variable. Because during conflict resolution, we call
// FindLowestTrailIndexThatExplainBound() with lowest and lowest bound, this
// cache can transform a quadratic complexity into a linear one.
{
const int cached_index = var_trail_index_cache_[i_lit.var];
if (cached_index < trail_index) {
const TrailEntry& entry = integer_trail_[cached_index];
if (entry.var == i_lit.var && entry.bound >= i_lit.bound) {
trail_index = cached_index;
}
}
}
int prev_trail_index = trail_index;
while (true) {
if (trail_index >= var_trail_index_cache_threshold_) {
var_trail_index_cache_[i_lit.var] = trail_index;
}
const TrailEntry& entry = integer_trail_[trail_index];
if (entry.bound == i_lit.bound) return trail_index;
if (entry.bound < i_lit.bound) return prev_trail_index;
prev_trail_index = trail_index;
trail_index = entry.prev_trail_index;
}
}
// TODO(user): Get rid of this function and only keep the trail index one?
void IntegerTrail::RelaxLinearReason(
IntegerValue slack, absl::Span<const IntegerValue> coeffs,
std::vector<IntegerLiteral>* reason) const {
CHECK_GE(slack, 0);
if (slack == 0) return;
const int size = reason->size();
tmp_indices_.resize(size);
for (int i = 0; i < size; ++i) {
CHECK_EQ((*reason)[i].bound, LowerBound((*reason)[i].var));
CHECK_GE(coeffs[i], 0);
tmp_indices_[i] = vars_[(*reason)[i].var].current_trail_index;
}
RelaxLinearReason(slack, coeffs, &tmp_indices_);
reason->clear();
for (const int i : tmp_indices_) {
reason->push_back(IntegerLiteral::GreaterOrEqual(integer_trail_[i].var,
integer_trail_[i].bound));
}
}
void IntegerTrail::AppendRelaxedLinearReason(
IntegerValue slack, absl::Span<const IntegerValue> coeffs,
absl::Span<const IntegerVariable> vars,
std::vector<IntegerLiteral>* reason) const {
tmp_indices_.clear();
for (const IntegerVariable var : vars) {
tmp_indices_.push_back(vars_[var].current_trail_index);
}
if (slack > 0) RelaxLinearReason(slack, coeffs, &tmp_indices_);
for (const int i : tmp_indices_) {
reason->push_back(IntegerLiteral::GreaterOrEqual(integer_trail_[i].var,
integer_trail_[i].bound));
}
}
// TODO(user): When this is called during a reason computation, we can use
// the term already part of the reason we are constructed to optimize this
// further.
void IntegerTrail::RelaxLinearReason(IntegerValue slack,
absl::Span<const IntegerValue> coeffs,
std::vector<int>* trail_indices) const {
DCHECK_GT(slack, 0);
DCHECK(relax_heap_.empty());
// We start by filtering *trail_indices:
// - remove all level zero entries.
// - keep the one that cannot be relaxed.
// - move the other one to the relax_heap_ (and creating the heap).
int new_size = 0;
const int size = coeffs.size();
const int num_vars = vars_.size();
for (int i = 0; i < size; ++i) {
const int index = (*trail_indices)[i];
// We ignore level zero entries.
if (index < num_vars) continue;
// If the coeff is too large, we cannot relax this entry.
const IntegerValue coeff = coeffs[i];
if (coeff > slack) {
(*trail_indices)[new_size++] = index;
continue;
}
// Note that both terms of the product are positive.
const TrailEntry& entry = integer_trail_[index];
const TrailEntry& previous_entry = integer_trail_[entry.prev_trail_index];
const int64 diff =
CapProd(coeff.value(), (entry.bound - previous_entry.bound).value());
if (diff > slack) {
(*trail_indices)[new_size++] = index;
continue;
}
relax_heap_.push_back({index, coeff, diff});
}
trail_indices->resize(new_size);
std::make_heap(relax_heap_.begin(), relax_heap_.end());
while (slack > 0 && !relax_heap_.empty()) {
const RelaxHeapEntry heap_entry = relax_heap_.front();
std::pop_heap(relax_heap_.begin(), relax_heap_.end());
relax_heap_.pop_back();
// The slack might have changed since the entry was added.
if (heap_entry.diff > slack) {
trail_indices->push_back(heap_entry.index);
continue;
}
// Relax, and decide what to do with the new value of index.
slack -= heap_entry.diff;
const int index = integer_trail_[heap_entry.index].prev_trail_index;
// Same code as in the first block.
if (index < num_vars) continue;
if (heap_entry.coeff > slack) {
trail_indices->push_back(index);
continue;
}
const TrailEntry& entry = integer_trail_[index];
const TrailEntry& previous_entry = integer_trail_[entry.prev_trail_index];
const int64 diff = CapProd(heap_entry.coeff.value(),
(entry.bound - previous_entry.bound).value());
if (diff > slack) {
trail_indices->push_back(index);
continue;
}
relax_heap_.push_back({index, heap_entry.coeff, diff});
std::push_heap(relax_heap_.begin(), relax_heap_.end());
}
// If we aborted early because of the slack, we need to push all remaining
// indices back into the reason.
for (const RelaxHeapEntry& entry : relax_heap_) {
trail_indices->push_back(entry.index);
}
relax_heap_.clear();
}
void IntegerTrail::RemoveLevelZeroBounds(
std::vector<IntegerLiteral>* reason) const {
int new_size = 0;
for (const IntegerLiteral literal : *reason) {
if (literal.bound <= LevelZeroLowerBound(literal.var)) continue;
(*reason)[new_size++] = literal;
}
reason->resize(new_size);
}
std::vector<Literal>* IntegerTrail::InitializeConflict(
IntegerLiteral integer_literal, const LazyReasonFunction& lazy_reason,
absl::Span<const Literal> literals_reason,
absl::Span<const IntegerLiteral> bounds_reason) {
DCHECK(tmp_queue_.empty());
std::vector<Literal>* conflict = trail_->MutableConflict();
if (lazy_reason == nullptr) {
conflict->assign(literals_reason.begin(), literals_reason.end());
const int num_vars = vars_.size();
for (const IntegerLiteral& literal : bounds_reason) {
const int trail_index = FindLowestTrailIndexThatExplainBound(literal);
if (trail_index >= num_vars) tmp_queue_.push_back(trail_index);
}
} else {
// We use the current trail index here.
conflict->clear();
lazy_reason(integer_literal, integer_trail_.size(), conflict, &tmp_queue_);
}
return conflict;
}
namespace {
std::string ReasonDebugString(absl::Span<const Literal> literal_reason,
absl::Span<const IntegerLiteral> integer_reason) {
std::string result = "literals:{";
for (const Literal l : literal_reason) {
if (result.back() != '{') result += ",";
result += l.DebugString();
}
result += "} bounds:{";
for (const IntegerLiteral l : integer_reason) {
if (result.back() != '{') result += ",";
result += l.DebugString();
}
result += "}";
return result;
}
} // namespace
std::string IntegerTrail::DebugString() {
std::string result = "trail:{";
const int num_vars = vars_.size();
const int limit =
std::min(num_vars + 30, static_cast<int>(integer_trail_.size()));
for (int i = num_vars; i < limit; ++i) {
if (result.back() != '{') result += ",";
result +=
IntegerLiteral::GreaterOrEqual(IntegerVariable(integer_trail_[i].var),
integer_trail_[i].bound)
.DebugString();
}
if (limit < integer_trail_.size()) {
result += ", ...";
}
result += "}";
return result;
}
bool IntegerTrail::Enqueue(IntegerLiteral i_lit,
absl::Span<const Literal> literal_reason,
absl::Span<const IntegerLiteral> integer_reason) {
return EnqueueInternal(i_lit, nullptr, literal_reason, integer_reason,
integer_trail_.size());
}
bool IntegerTrail::Enqueue(IntegerLiteral i_lit,
absl::Span<const Literal> literal_reason,
absl::Span<const IntegerLiteral> integer_reason,
int trail_index_with_same_reason) {
return EnqueueInternal(i_lit, nullptr, literal_reason, integer_reason,
trail_index_with_same_reason);
}
bool IntegerTrail::Enqueue(IntegerLiteral i_lit,
LazyReasonFunction lazy_reason) {
return EnqueueInternal(i_lit, lazy_reason, {}, {}, integer_trail_.size());
}
bool IntegerTrail::ReasonIsValid(
absl::Span<const Literal> literal_reason,
absl::Span<const IntegerLiteral> integer_reason) {
const VariablesAssignment& assignment = trail_->Assignment();
for (const Literal lit : literal_reason) {
if (!assignment.LiteralIsFalse(lit)) return false;
}
for (const IntegerLiteral i_lit : integer_reason) {
if (i_lit.bound > vars_[i_lit.var].current_bound) {