forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteger_search.cc
831 lines (728 loc) · 33 KB
/
integer_search.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/integer_search.h"
#include <cmath>
#include <functional>
#include <vector>
#include "ortools/sat/cp_model_loader.h"
#include "ortools/sat/implied_bounds.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_programming_constraint.h"
#include "ortools/sat/probing.h"
#include "ortools/sat/pseudo_costs.h"
#include "ortools/sat/rins.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_decision.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/util.h"
namespace operations_research {
namespace sat {
LiteralIndex BranchDown(IntegerVariable var, IntegerValue value, Model* model) {
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* trail = model->GetOrCreate<Trail>();
const Literal le = encoder->GetOrCreateAssociatedLiteral(
IntegerLiteral::LowerOrEqual(var, value));
DCHECK(!trail->Assignment().VariableIsAssigned(le.Variable()));
return le.Index();
}
LiteralIndex BranchUp(IntegerVariable var, IntegerValue value, Model* model) {
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* trail = model->GetOrCreate<Trail>();
const Literal ge = encoder->GetOrCreateAssociatedLiteral(
IntegerLiteral::GreaterOrEqual(var, value));
DCHECK(!trail->Assignment().VariableIsAssigned(ge.Variable()));
return ge.Index();
}
LiteralIndex AtMinValue(IntegerVariable var, IntegerTrail* integer_trail,
IntegerEncoder* integer_encoder) {
DCHECK(!integer_trail->IsCurrentlyIgnored(var));
const IntegerValue lb = integer_trail->LowerBound(var);
DCHECK_LE(lb, integer_trail->UpperBound(var));
if (lb == integer_trail->UpperBound(var)) return kNoLiteralIndex;
const Literal result = integer_encoder->GetOrCreateAssociatedLiteral(
IntegerLiteral::LowerOrEqual(var, lb));
return result.Index();
}
LiteralIndex GreaterOrEqualToMiddleValue(IntegerVariable var, Model* model) {
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
const IntegerValue var_lb = integer_trail->LowerBound(var);
const IntegerValue var_ub = integer_trail->UpperBound(var);
CHECK_LT(var_lb, var_ub);
const IntegerValue chosen_value =
var_lb + std::max(IntegerValue(1), (var_ub - var_lb) / IntegerValue(2));
return BranchUp(var, chosen_value, model);
}
LiteralIndex SplitAroundGivenValue(IntegerVariable positive_var,
IntegerValue value, Model* model) {
DCHECK(VariableIsPositive(positive_var));
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
const IntegerValue lb = integer_trail->LowerBound(positive_var);
const IntegerValue ub = integer_trail->UpperBound(positive_var);
const absl::flat_hash_set<IntegerVariable>& variables =
model->GetOrCreate<ObjectiveDefinition>()->objective_impacting_variables;
// Heuristic: Prefer the objective direction first. Reference: Conflict-Driven
// Heuristics for Mixed Integer Programming (2019) by Jakob Witzig and Ambros
// Gleixner.
// NOTE: The value might be out of bounds. In that case we return
// kNoLiteralIndex.
const bool branch_down_feasible = value >= lb && value < ub;
const bool branch_up_feasible = value > lb && value <= ub;
if (variables.contains(positive_var) && branch_down_feasible) {
return BranchDown(positive_var, value, model);
} else if (variables.contains(NegationOf(positive_var)) &&
branch_up_feasible) {
return BranchUp(positive_var, value, model);
} else if (branch_down_feasible) {
return BranchDown(positive_var, value, model);
} else if (branch_up_feasible) {
return BranchUp(positive_var, value, model);
}
return kNoLiteralIndex;
}
LiteralIndex SplitAroundLpValue(IntegerVariable var, Model* model) {
auto* parameters = model->GetOrCreate<SatParameters>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* lp_dispatcher = model->GetOrCreate<LinearProgrammingDispatcher>();
DCHECK(!integer_trail->IsCurrentlyIgnored(var));
const IntegerVariable positive_var = PositiveVariable(var);
const LinearProgrammingConstraint* lp =
gtl::FindWithDefault(*lp_dispatcher, positive_var, nullptr);
// We only use this if the sub-lp has a solution, and depending on the value
// of exploit_all_lp_solution() if it is a pure-integer solution.
if (lp == nullptr || !lp->HasSolution()) return kNoLiteralIndex;
if (!parameters->exploit_all_lp_solution() && !lp->SolutionIsInteger()) {
return kNoLiteralIndex;
}
const IntegerValue value = IntegerValue(
static_cast<int64>(std::round(lp->GetSolutionValue(positive_var))));
// Because our lp solution might be from higher up in the tree, it
// is possible that value is now outside the domain of positive_var.
// In this case, this function will return kNoLiteralIndex.
return SplitAroundGivenValue(positive_var, value, model);
}
LiteralIndex SplitDomainUsingBestSolutionValue(IntegerVariable var,
Model* model) {
SolutionDetails* solution_details = model->GetOrCreate<SolutionDetails>();
if (solution_details->solution_count == 0) return kNoLiteralIndex;
const IntegerVariable positive_var = PositiveVariable(var);
if (var >= solution_details->best_solution.size()) {
return kNoLiteralIndex;
}
VLOG(2) << "Using last solution value for branching";
const IntegerValue value = solution_details->best_solution[var];
return SplitAroundGivenValue(positive_var, value, model);
}
// TODO(user): the complexity caused by the linear scan in this heuristic and
// the one below is ok when search_branching is set to SAT_SEARCH because it is
// not executed often, but otherwise it is done for each search decision,
// which seems expensive. Improve.
std::function<LiteralIndex()> FirstUnassignedVarAtItsMinHeuristic(
const std::vector<IntegerVariable>& vars, Model* model) {
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* integer_encoder = model->GetOrCreate<IntegerEncoder>();
return [/*copy*/ vars, integer_trail, integer_encoder]() {
for (const IntegerVariable var : vars) {
// Note that there is no point trying to fix a currently ignored variable.
if (integer_trail->IsCurrentlyIgnored(var)) continue;
const LiteralIndex decision =
AtMinValue(var, integer_trail, integer_encoder);
if (decision != kNoLiteralIndex) return decision;
}
return kNoLiteralIndex;
};
}
std::function<LiteralIndex()> UnassignedVarWithLowestMinAtItsMinHeuristic(
const std::vector<IntegerVariable>& vars, Model* model) {
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* integer_encoder = model->GetOrCreate<IntegerEncoder>();
return [/*copy */ vars, integer_trail, integer_encoder]() {
IntegerVariable candidate = kNoIntegerVariable;
IntegerValue candidate_lb;
for (const IntegerVariable var : vars) {
if (integer_trail->IsCurrentlyIgnored(var)) continue;
const IntegerValue lb = integer_trail->LowerBound(var);
if (lb < integer_trail->UpperBound(var) &&
(candidate == kNoIntegerVariable || lb < candidate_lb)) {
candidate = var;
candidate_lb = lb;
}
}
if (candidate == kNoIntegerVariable) return kNoLiteralIndex;
return AtMinValue(candidate, integer_trail, integer_encoder);
};
}
std::function<LiteralIndex()> SequentialSearch(
std::vector<std::function<LiteralIndex()>> heuristics) {
return [heuristics]() {
for (const auto& h : heuristics) {
const LiteralIndex li = h();
if (li != kNoLiteralIndex) return li;
}
return kNoLiteralIndex;
};
}
std::function<LiteralIndex()> SequentialValueSelection(
std::vector<std::function<LiteralIndex(IntegerVariable)>>
value_selection_heuristics,
std::function<LiteralIndex()> var_selection_heuristic, Model* model) {
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
return [=]() {
// Get the current decision.
const LiteralIndex current_decision = var_selection_heuristic();
if (current_decision == kNoLiteralIndex) return kNoLiteralIndex;
// Decode the decision and get the variable.
for (const IntegerLiteral l :
encoder->GetAllIntegerLiterals(Literal(current_decision))) {
if (integer_trail->IsCurrentlyIgnored(l.var)) continue;
// Sequentially try the value selection heuristics.
for (const auto& value_heuristic : value_selection_heuristics) {
const LiteralIndex decision = value_heuristic(l.var);
if (decision != kNoLiteralIndex) {
return decision;
}
}
}
VLOG(2) << "Value selection: using default decision.";
return current_decision;
};
}
// If a variable appear in the objective, branch on its best objective value.
LiteralIndex ChooseBestObjectiveValue(IntegerVariable var, Model* model) {
const auto& variables =
model->GetOrCreate<ObjectiveDefinition>()->objective_impacting_variables;
auto* encoder = model->GetOrCreate<IntegerEncoder>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
if (variables.contains(var)) {
return AtMinValue(var, integer_trail, encoder);
} else if (variables.contains(NegationOf(var))) {
return AtMinValue(NegationOf(var), integer_trail, encoder);
}
return kNoLiteralIndex;
}
// TODO(user): Experiment more with value selection heuristics.
std::function<LiteralIndex()> IntegerValueSelectionHeuristic(
std::function<LiteralIndex()> var_selection_heuristic, Model* model) {
const SatParameters& parameters = *(model->GetOrCreate<SatParameters>());
std::vector<std::function<LiteralIndex(IntegerVariable)>>
value_selection_heuristics;
// LP based value.
//
// Note that we only do this if a big enough percentage of the problem
// variables appear in the LP relaxation.
if (LinearizedPartIsLarge(model) &&
(parameters.exploit_integer_lp_solution() ||
parameters.exploit_all_lp_solution())) {
VLOG(1) << "Using LP value selection heuristic.";
value_selection_heuristics.push_back([model](IntegerVariable var) {
return SplitAroundLpValue(PositiveVariable(var), model);
});
}
// Solution based value.
if (parameters.exploit_best_solution()) {
VLOG(1) << "Using best solution value selection heuristic.";
value_selection_heuristics.push_back([model](IntegerVariable var) {
return SplitDomainUsingBestSolutionValue(var, model);
});
}
// Objective based value.
if (parameters.exploit_objective()) {
VLOG(1) << "Using objective value selection heuristic.";
value_selection_heuristics.push_back([model](IntegerVariable var) {
return ChooseBestObjectiveValue(var, model);
});
}
return SequentialValueSelection(value_selection_heuristics,
var_selection_heuristic, model);
}
std::function<LiteralIndex()> SatSolverHeuristic(Model* model) {
SatSolver* sat_solver = model->GetOrCreate<SatSolver>();
Trail* trail = model->GetOrCreate<Trail>();
SatDecisionPolicy* decision_policy = model->GetOrCreate<SatDecisionPolicy>();
return [sat_solver, trail, decision_policy] {
const bool all_assigned = trail->Index() == sat_solver->NumVariables();
if (all_assigned) return kNoLiteralIndex;
const Literal result = decision_policy->NextBranch();
CHECK(!sat_solver->Assignment().LiteralIsAssigned(result));
return result.Index();
};
}
std::function<LiteralIndex()> PseudoCost(Model* model) {
auto* objective = model->Get<ObjectiveDefinition>();
const bool has_objective =
objective != nullptr && objective->objective_var != kNoIntegerVariable;
if (!has_objective) {
return []() { return kNoLiteralIndex; };
}
PseudoCosts* pseudo_costs = model->GetOrCreate<PseudoCosts>();
return [pseudo_costs, model]() {
const IntegerVariable chosen_var = pseudo_costs->GetBestDecisionVar();
if (chosen_var == kNoIntegerVariable) return kNoLiteralIndex;
return GreaterOrEqualToMiddleValue(chosen_var, model);
};
}
std::function<LiteralIndex()> RandomizeOnRestartHeuristic(Model* model) {
SatSolver* sat_solver = model->GetOrCreate<SatSolver>();
SatDecisionPolicy* decision_policy = model->GetOrCreate<SatDecisionPolicy>();
// TODO(user): Add other policy and perform more experiments.
std::function<LiteralIndex()> sat_policy = SatSolverHeuristic(model);
std::vector<std::function<LiteralIndex()>> policies{
sat_policy, SequentialSearch({PseudoCost(model), sat_policy})};
// The higher weight for the sat policy is because this policy actually
// contains a lot of variation as we randomize the sat parameters.
// TODO(user,user): Do more experiments to find better distribution.
std::discrete_distribution<int> var_dist{3 /*sat_policy*/, 1 /*Pseudo cost*/};
// Value selection.
std::vector<std::function<LiteralIndex(IntegerVariable)>>
value_selection_heuristics;
std::vector<int> value_selection_weight;
// LP Based value.
value_selection_heuristics.push_back([model](IntegerVariable var) {
return SplitAroundLpValue(PositiveVariable(var), model);
});
value_selection_weight.push_back(8);
// Solution based value.
value_selection_heuristics.push_back([model](IntegerVariable var) {
return SplitDomainUsingBestSolutionValue(var, model);
});
value_selection_weight.push_back(5);
// Middle value.
value_selection_heuristics.push_back([model](IntegerVariable var) {
return GreaterOrEqualToMiddleValue(var, model);
});
value_selection_weight.push_back(1);
// Min value.
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* integer_encoder = model->GetOrCreate<IntegerEncoder>();
value_selection_heuristics.push_back(
[integer_trail, integer_encoder](IntegerVariable var) {
return AtMinValue(var, integer_trail, integer_encoder);
});
value_selection_weight.push_back(1);
// Special case: Don't change the decision value.
value_selection_weight.push_back(10);
// TODO(user): These distribution values are just guessed values. They need
// to be tuned.
std::discrete_distribution<int> val_dist(value_selection_weight.begin(),
value_selection_weight.end());
int policy_index = 0;
int val_policy_index = 0;
return [=]() mutable {
if (sat_solver->CurrentDecisionLevel() == 0) {
auto* random = model->GetOrCreate<ModelRandomGenerator>();
RandomizeDecisionHeuristic(random, model->GetOrCreate<SatParameters>());
decision_policy->ResetDecisionHeuristic();
// Select the variable selection heuristic.
policy_index = var_dist(*(random));
// Select the value selection heuristic.
val_policy_index = val_dist(*(random));
}
// Get the current decision.
const LiteralIndex current_decision = policies[policy_index]();
if (current_decision == kNoLiteralIndex) return kNoLiteralIndex;
// Special case: Don't override the decision value.
if (val_policy_index >= value_selection_heuristics.size()) {
return current_decision;
}
// Decode the decision and get the variable.
for (const IntegerLiteral l :
integer_encoder->GetAllIntegerLiterals(Literal(current_decision))) {
if (integer_trail->IsCurrentlyIgnored(l.var)) continue;
// Try the selected policy.
const LiteralIndex new_decision =
value_selection_heuristics[val_policy_index](l.var);
if (new_decision != kNoLiteralIndex) {
return new_decision;
}
}
// Selected policy failed. Revert back to original decision.
return current_decision;
};
}
// TODO(user): Avoid the quadratic algorithm!!
std::function<LiteralIndex()> FollowHint(
const std::vector<BooleanOrIntegerVariable>& vars,
const std::vector<IntegerValue>& values, Model* model) {
const Trail* trail = model->GetOrCreate<Trail>();
const IntegerTrail* integer_trail = model->GetOrCreate<IntegerTrail>();
return [=] { // copy
for (int i = 0; i < vars.size(); ++i) {
const IntegerValue value = values[i];
if (vars[i].bool_var != kNoBooleanVariable) {
if (trail->Assignment().VariableIsAssigned(vars[i].bool_var)) continue;
return Literal(vars[i].bool_var, value == 1).Index();
} else {
const IntegerVariable integer_var = vars[i].int_var;
if (integer_trail->IsCurrentlyIgnored(integer_var)) continue;
if (integer_trail->IsFixed(integer_var)) continue;
const IntegerVariable positive_var = PositiveVariable(integer_var);
const LiteralIndex decision = SplitAroundGivenValue(
positive_var, positive_var != integer_var ? -value : value, model);
if (decision != kNoLiteralIndex) return decision;
// If the value is outside the current possible domain, we skip it.
continue;
}
}
return kNoLiteralIndex;
};
}
bool LpSolutionIsExploitable(Model* model) {
auto* lp_constraints =
model->GetOrCreate<LinearProgrammingConstraintCollection>();
const SatParameters& parameters = *(model->GetOrCreate<SatParameters>());
// TODO(user,user): When we have more than one LP, their set of variable
// is always disjoint. So we could still change the polarity if the next
// variable we branch on is part of a LP that has a solution.
for (LinearProgrammingConstraint* lp : *lp_constraints) {
if (!lp->HasSolution() ||
!(parameters.exploit_all_lp_solution() || lp->SolutionIsInteger())) {
return false;
}
}
return true;
}
bool LinearizedPartIsLarge(Model* model) {
auto* lp_constraints =
model->GetOrCreate<LinearProgrammingConstraintCollection>();
int num_lp_variables = 0;
for (LinearProgrammingConstraint* lp : *lp_constraints) {
num_lp_variables += lp->NumVariables();
}
const int num_integer_variables =
model->GetOrCreate<IntegerTrail>()->NumIntegerVariables().value() / 2;
return (num_integer_variables <= 2 * num_lp_variables);
}
std::function<bool()> RestartEveryKFailures(int k, SatSolver* solver) {
bool reset_at_next_call = true;
int next_num_failures = 0;
return [=]() mutable {
if (reset_at_next_call) {
next_num_failures = solver->num_failures() + k;
reset_at_next_call = false;
} else if (solver->num_failures() >= next_num_failures) {
reset_at_next_call = true;
}
return reset_at_next_call;
};
}
std::function<bool()> SatSolverRestartPolicy(Model* model) {
auto policy = model->GetOrCreate<RestartPolicy>();
return [policy]() { return policy->ShouldRestart(); };
}
void ConfigureSearchHeuristics(Model* model) {
SearchHeuristics& heuristics = *model->GetOrCreate<SearchHeuristics>();
CHECK(heuristics.fixed_search != nullptr);
heuristics.policy_index = 0;
heuristics.decision_policies.clear();
heuristics.restart_policies.clear();
const SatParameters& parameters = *(model->GetOrCreate<SatParameters>());
switch (parameters.search_branching()) {
case SatParameters::AUTOMATIC_SEARCH: {
std::function<LiteralIndex()> decision_policy;
if (parameters.randomize_search()) {
decision_policy = RandomizeOnRestartHeuristic(model);
} else {
decision_policy = SatSolverHeuristic(model);
}
decision_policy =
SequentialSearch({decision_policy, heuristics.fixed_search});
decision_policy = IntegerValueSelectionHeuristic(decision_policy, model);
heuristics.decision_policies = {decision_policy};
heuristics.restart_policies = {SatSolverRestartPolicy(model)};
return;
}
case SatParameters::FIXED_SEARCH: {
// Not all Boolean might appear in fixed_search(), so once there is no
// decision left, we fix all Booleans that are still undecided.
heuristics.decision_policies = {SequentialSearch(
{heuristics.fixed_search, SatSolverHeuristic(model)})};
if (parameters.randomize_search()) {
heuristics.restart_policies = {SatSolverRestartPolicy(model)};
return;
}
// TODO(user): We might want to restart if external info is available.
// Code a custom restart for this?
auto no_restart = []() { return false; };
heuristics.restart_policies = {no_restart};
return;
}
case SatParameters::HINT_SEARCH: {
CHECK(heuristics.hint_search != nullptr);
heuristics.decision_policies = {
SequentialSearch({heuristics.hint_search, SatSolverHeuristic(model),
heuristics.fixed_search})};
auto no_restart = []() { return false; };
heuristics.restart_policies = {no_restart};
return;
}
case SatParameters::PORTFOLIO_SEARCH: {
heuristics.decision_policies = CompleteHeuristics(
AddModelHeuristics({heuristics.fixed_search}, model),
SequentialSearch(
{SatSolverHeuristic(model), heuristics.fixed_search}));
for (auto& ref : heuristics.decision_policies) {
ref = IntegerValueSelectionHeuristic(ref, model);
}
heuristics.restart_policies.assign(heuristics.decision_policies.size(),
SatSolverRestartPolicy(model));
return;
}
case SatParameters::LP_SEARCH: {
std::vector<std::function<LiteralIndex()>> lp_heuristics;
for (const auto& ct :
*(model->GetOrCreate<LinearProgrammingConstraintCollection>())) {
lp_heuristics.push_back(ct->LPReducedCostAverageBranching());
}
if (lp_heuristics.empty()) { // Revert to fixed search.
heuristics.decision_policies = {SequentialSearch(
{heuristics.fixed_search, SatSolverHeuristic(model)})},
heuristics.restart_policies = {SatSolverRestartPolicy(model)};
return;
}
heuristics.decision_policies = CompleteHeuristics(
lp_heuristics, SequentialSearch({SatSolverHeuristic(model),
heuristics.fixed_search}));
heuristics.restart_policies.assign(heuristics.decision_policies.size(),
SatSolverRestartPolicy(model));
return;
}
case SatParameters::PSEUDO_COST_SEARCH: {
std::function<LiteralIndex()> search =
SequentialSearch({PseudoCost(model), SatSolverHeuristic(model),
heuristics.fixed_search});
heuristics.decision_policies = {
IntegerValueSelectionHeuristic(search, model)};
heuristics.restart_policies = {SatSolverRestartPolicy(model)};
return;
}
case SatParameters::PORTFOLIO_WITH_QUICK_RESTART_SEARCH: {
std::function<LiteralIndex()> search = SequentialSearch(
{RandomizeOnRestartHeuristic(model), heuristics.fixed_search});
heuristics.decision_policies = {search};
heuristics.restart_policies = {
RestartEveryKFailures(10, model->GetOrCreate<SatSolver>())};
return;
}
}
}
std::vector<std::function<LiteralIndex()>> AddModelHeuristics(
const std::vector<std::function<LiteralIndex()>>& input_heuristics,
Model* model) {
std::vector<std::function<LiteralIndex()>> heuristics = input_heuristics;
auto* extra_heuristics = model->GetOrCreate<SearchHeuristicsVector>();
heuristics.insert(heuristics.end(), extra_heuristics->begin(),
extra_heuristics->end());
return heuristics;
}
std::vector<std::function<LiteralIndex()>> CompleteHeuristics(
const std::vector<std::function<LiteralIndex()>>& incomplete_heuristics,
const std::function<LiteralIndex()>& completion_heuristic) {
std::vector<std::function<LiteralIndex()>> complete_heuristics;
complete_heuristics.reserve(incomplete_heuristics.size());
for (const auto& incomplete : incomplete_heuristics) {
complete_heuristics.push_back(
SequentialSearch({incomplete, completion_heuristic}));
}
return complete_heuristics;
}
SatSolver::Status SolveIntegerProblem(Model* model) {
TimeLimit* time_limit = model->GetOrCreate<TimeLimit>();
if (time_limit->LimitReached()) return SatSolver::LIMIT_REACHED;
SearchHeuristics& heuristics = *model->GetOrCreate<SearchHeuristics>();
const int num_policies = heuristics.decision_policies.size();
CHECK_NE(num_policies, 0);
CHECK_EQ(num_policies, heuristics.restart_policies.size());
// This is needed for recording the pseudo-costs.
IntegerVariable objective_var = kNoIntegerVariable;
{
const ObjectiveDefinition* objective = model->Get<ObjectiveDefinition>();
if (objective != nullptr) objective_var = objective->objective_var;
}
// Note that it is important to do the level-zero propagation if it wasn't
// already done because EnqueueDecisionAndBackjumpOnConflict() assumes that
// the solver is in a "propagated" state.
SatSolver* const sat_solver = model->GetOrCreate<SatSolver>();
// TODO(user): We have the issue that at level zero. calling the propagation
// loop more than once can propagate more! This is because we call the LP
// again and again on each level zero propagation. This is causing some
// CHECKs() to fail in multithread (rarely) because when we associate new
// literals to integer ones, Propagate() is indirectly called. Not sure yet
// how to fix.
if (!sat_solver->FinishPropagation()) return sat_solver->UnsatStatus();
// Create and initialize pseudo costs.
// TODO(user): If this ever shows up in a cpu profile, find a way to not
// execute the code when pseudo costs are not needed.
PseudoCosts* pseudo_costs = model->GetOrCreate<PseudoCosts>();
auto* integer_trail = model->GetOrCreate<IntegerTrail>();
auto* implied_bounds = model->GetOrCreate<ImpliedBounds>();
const SatParameters& sat_parameters = *(model->GetOrCreate<SatParameters>());
// Main search loop.
const int64 old_num_conflicts = sat_solver->num_failures();
const int64 conflict_limit = sat_parameters.max_number_of_conflicts();
int64 num_decisions_without_rins = 0;
int64 num_decisions_without_probing = 0;
while (!time_limit->LimitReached() &&
(sat_solver->num_failures() - old_num_conflicts < conflict_limit)) {
// If needed, restart and switch decision_policy.
if (heuristics.restart_policies[heuristics.policy_index]()) {
if (!sat_solver->RestoreSolverToAssumptionLevel()) {
return sat_solver->UnsatStatus();
}
heuristics.policy_index = (heuristics.policy_index + 1) % num_policies;
}
if (sat_solver->CurrentDecisionLevel() == 0) {
if (!implied_bounds->EnqueueNewDeductions()) {
return SatSolver::INFEASIBLE;
}
auto* level_zero_callbacks =
model->GetOrCreate<LevelZeroCallbackHelper>();
for (const auto& cb : level_zero_callbacks->callbacks) {
if (!cb()) {
return SatSolver::INFEASIBLE;
}
}
}
LiteralIndex decision = kNoLiteralIndex;
while (true) {
decision = heuristics.decision_policies[heuristics.policy_index]();
if (decision == kNoLiteralIndex) break;
if (sat_solver->Assignment().LiteralIsAssigned(Literal(decision))) {
// TODO(user): It would be nicer if this can never happen. For now, it
// does because of the Propagate() not reaching the fixed point as
// mentionned in a TODO above. As a work-around, we display a message
// but do not crash and recall the decision heuristic.
VLOG(1) << "Trying to take a decision that is already assigned!"
<< " Fix this. Continuing for now...";
continue;
}
// Probing.
if (sat_solver->CurrentDecisionLevel() == 0 &&
sat_parameters.probing_period_at_root() > 0 &&
++num_decisions_without_probing >=
sat_parameters.probing_period_at_root()) {
num_decisions_without_probing = 0;
// TODO(user): Be smarter about what variables we probe, we can also
// do more than one.
if (!ProbeBooleanVariables(0.1, {Literal(decision).Variable()},
model)) {
return SatSolver::INFEASIBLE;
}
DCHECK_EQ(sat_solver->CurrentDecisionLevel(), 0);
// We need to check after the probing that the literal is not fixed,
// otherwise we just go to the next decision.
if (sat_solver->Assignment().LiteralIsAssigned(Literal(decision))) {
continue;
}
}
break;
}
// Record the changelist and objective bounds for updating pseudo costs.
const std::vector<PseudoCosts::VariableBoundChange> bound_changes =
GetBoundChanges(decision, model);
IntegerValue current_obj_lb = kMinIntegerValue;
IntegerValue current_obj_ub = kMaxIntegerValue;
if (objective_var != kNoIntegerVariable) {
current_obj_lb = integer_trail->LowerBound(objective_var);
current_obj_ub = integer_trail->UpperBound(objective_var);
}
const int old_level = sat_solver->CurrentDecisionLevel();
// No decision means that we reached a leave of the search tree and that
// we have a feasible solution.
if (decision == kNoLiteralIndex) {
SolutionDetails* solution_details = model->Mutable<SolutionDetails>();
if (solution_details != nullptr) {
solution_details->LoadFromTrail(*integer_trail);
}
// Save the current polarity of all Booleans in the solution. It will be
// followed for the next SAT decisions. This is known to be a good policy
// for optimization problem. Note that for decision problem we don't care
// since we are just done as soon as a solution is found.
//
// This idea is kind of "well known", see for instance the "LinSBPS"
// submission to the maxSAT 2018 competition by Emir Demirovic and Peter
// Stuckey where they show it is a good idea and provide more references.
if (model->GetOrCreate<SatParameters>()->use_optimization_hints()) {
auto* sat_decision = model->GetOrCreate<SatDecisionPolicy>();
const auto& trail = *model->GetOrCreate<Trail>();
for (int i = 0; i < trail.Index(); ++i) {
sat_decision->SetAssignmentPreference(trail[i], 0.0);
}
}
return SatSolver::FEASIBLE;
}
// TODO(user): on some problems, this function can be quite long. Expand
// so that we can check the time limit at each step?
sat_solver->EnqueueDecisionAndBackjumpOnConflict(Literal(decision));
// Update the implied bounds each time we enqueue a literal at level zero.
// This is "almost free", so we might as well do it.
if (old_level == 0 && sat_solver->CurrentDecisionLevel() == 1) {
implied_bounds->ProcessIntegerTrail(Literal(decision));
}
// Update the pseudo costs.
if (sat_solver->CurrentDecisionLevel() > old_level &&
objective_var != kNoIntegerVariable) {
const IntegerValue new_obj_lb = integer_trail->LowerBound(objective_var);
const IntegerValue new_obj_ub = integer_trail->UpperBound(objective_var);
const IntegerValue objective_bound_change =
(new_obj_lb - current_obj_lb) + (current_obj_ub - new_obj_ub);
pseudo_costs->UpdateCost(bound_changes, objective_bound_change);
}
sat_solver->AdvanceDeterministicTime(time_limit);
if (!sat_solver->ReapplyAssumptionsIfNeeded()) {
return sat_solver->UnsatStatus();
}
if (model->Get<SharedRINSNeighborhoodManager>() != nullptr) {
num_decisions_without_rins++;
// TODO(user): Experiment more around dynamically changing the
// threshold for trigerring RINS. Alternatively expose this as parameter
// so this can be tuned later.
if (num_decisions_without_rins >= 100) {
num_decisions_without_rins = 0;
AddRINSNeighborhood(model);
}
}
}
return SatSolver::Status::LIMIT_REACHED;
}
SatSolver::Status ResetAndSolveIntegerProblem(
const std::vector<Literal>& assumptions, Model* model) {
SatSolver* const solver = model->GetOrCreate<SatSolver>();
// Sync the bound first.
if (!solver->ResetToLevelZero()) return solver->UnsatStatus();
auto* level_zero_callbacks = model->GetOrCreate<LevelZeroCallbackHelper>();
for (const auto& cb : level_zero_callbacks->callbacks) {
if (!cb()) return SatSolver::INFEASIBLE;
}
// Add the assumptions if any and solve.
if (!solver->ResetWithGivenAssumptions(assumptions)) {
return solver->UnsatStatus();
}
return SolveIntegerProblem(model);
}
SatSolver::Status SolveIntegerProblemWithLazyEncoding(Model* model) {
const IntegerVariable num_vars =
model->GetOrCreate<IntegerTrail>()->NumIntegerVariables();
std::vector<IntegerVariable> all_variables;
for (IntegerVariable var(0); var < num_vars; ++var) {
all_variables.push_back(var);
}
SearchHeuristics& heuristics = *model->GetOrCreate<SearchHeuristics>();
heuristics.policy_index = 0;
heuristics.decision_policies = {SequentialSearch(
{SatSolverHeuristic(model),
FirstUnassignedVarAtItsMinHeuristic(all_variables, model)})};
heuristics.restart_policies = {SatSolverRestartPolicy(model)};
return ResetAndSolveIntegerProblem(/*assumptions=*/{}, model);
}
} // namespace sat
} // namespace operations_research