forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_relaxation.h
136 lines (121 loc) · 6.4 KB
/
linear_relaxation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_LINEAR_RELAXATION_H_
#define OR_TOOLS_SAT_LINEAR_RELAXATION_H_
#include <vector>
#include "ortools/sat/cp_model_loader.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/linear_programming_constraint.h"
#include "ortools/sat/model.h"
namespace operations_research {
namespace sat {
struct LinearRelaxation {
std::vector<LinearConstraint> linear_constraints;
std::vector<std::vector<Literal>> at_most_ones;
std::vector<CutGenerator> cut_generators;
};
// If the given IntegerVariable is fully encoded (li <=> var == xi), adds to the
// constraints vector the following linear relaxation of its encoding:
// - Sum li == 1
// - Sum li * xi == var
// Note that all the literal (li) of the encoding must have an IntegerView,
// otherwise this function just does nothing.
//
// Returns false, if the relaxation couldn't be added because this variable
// was not fully encoded or not all its associated literal had a view.
bool AppendFullEncodingRelaxation(IntegerVariable var, const Model& model,
LinearRelaxation* relaxation);
// When the set of (li <=> var == xi) do not cover the full domain of xi, we
// do something a bit more involved. Let min/max the min and max value of the
// domain of var that is NOT part of the encoding. We add:
// - Sum li <= 1
// - (Sum li * xi) + (1 - Sum li) * min <= var
// - var <= (Sum li * xi) + (1 - Sum li) * max
//
// Note that if it turns out that the partial encoding is full, this will just
// use the same encoding as AppendFullEncodingRelaxation(). Any literal that
// do not have an IntegerView will be skipped, there is no point adding them
// to the LP if they are not used in any other constraint, the relaxation will
// have the same "power" without them.
void AppendPartialEncodingRelaxation(IntegerVariable var, const Model& model,
LinearRelaxation* relaxation);
// This is a different relaxation that use a partial set of literal li such that
// (li <=> var >= xi). In which case we use the following encoding:
// - li >= l_{i+1} for all possible i. Note that the xi need to be sorted.
// - var >= min + l0 * (x0 - min) + Sum_{i>0} li * (xi - x_{i-1})
// - and same as above for NegationOf(var) for the upper bound.
//
// Like for AppendPartialEncodingRelaxation() we skip any li that do not have
// an integer view.
void AppendPartialGreaterThanEncodingRelaxation(IntegerVariable var,
const Model& model,
LinearRelaxation* relaxation);
// Adds linearization of different types of constraints.
void TryToLinearizeConstraint(const CpModelProto& model_proto,
const ConstraintProto& ct, Model* model,
int linearization_level,
LinearRelaxation* relaxation);
// Adds linearization of no overlap constraints. For each pair of intervals, we
// add linear constraints enforcing precedence of one over other. We check the
// bounds and only linearize the pairs which are intersecting. We ignore the
// intervals with enforcement literal. Note that we might create new variables
// for each pair of intervals and this might cause addition of quadratic number
// of new variables.
void AppendNoOverlapRelaxation(const CpModelProto& model_proto,
const ConstraintProto& ct,
int linearization_level, Model* model,
LinearRelaxation* relaxation);
// Adds linearization of int max constraints. This can also be used to linearize
// int min with negated variables.
void AppendMaxRelaxation(IntegerVariable target,
const std::vector<IntegerVariable>& vars,
int linearization_level, Model* model,
LinearRelaxation* relaxation);
// Adds linearization of int max constraints. Returns a vector of z vars such
// that: z_vars[l] == 1 <=> target = exprs[l].
//
// Consider the Lin Max constraint with d expressions and n variables in the
// form: target = max {exprs[l] = Sum (wli * xi + bl)}. l in {1,..,d}.
// Li = lower bound of xi
// Ui = upper bound of xi.
// Let zl be in {0,1} for all l in {1,..,d}.
// The target = exprs[l] when zl = 1.
//
// The following is a valid linearization for Lin Max.
// target >= exprs[l], for all l in {1,..,d}
// target <= Sum_i(wki * xi) + Sum_l((Nkl + bl) * zl), for all k in {1,..,d}
// Where Nkl is a large number defined as:
// Nkl = Sum_i(max((wli - wki)*Li, (wli - wki)*Ui))
// = Sum (max corner difference for variable i, target expr k, max expr l)
// Reference: "Strong mixed-integer programming formulations for trained neural
// networks" by Ross Anderson et. (https://arxiv.org/pdf/1811.01988.pdf).
// TODO(user): Support linear expression as target.
std::vector<IntegerVariable> AppendLinMaxRelaxation(
IntegerVariable target, const std::vector<LinearExpression>& exprs,
Model* model, LinearRelaxation* relaxation);
// Appends linear constraints to the relaxation. This also handles the
// relaxation of linear constraints with enforcement literals.
// A linear constraint lb <= ax <= ub with enforcement literals {ei} is relaxed
// as following.
// lb <= (Sum Negated(ei) * (lb - implied_lb)) + ax <= inf
// -inf <= (Sum Negated(ei) * (ub - implied_ub)) + ax <= ub
// Where implied_lb and implied_ub are trivial lower and upper bounds of the
// constraint.
void AppendLinearConstraintRelaxation(const ConstraintProto& constraint_proto,
const int linearization_level,
const Model& model,
LinearRelaxation* relaxation);
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_LINEAR_RELAXATION_H_