-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathim_transf_net.py
276 lines (225 loc) · 8.73 KB
/
im_transf_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
Functions used for the creation of the image transformation network.
File author: Grant Watson
Date: Jan 2017
"""
import tensorflow as tf
# TODO: For resize-convolution, what if we use strides of 1 for the
# convolution instead of upsampling past the desired dimensions? Test this.
def create_net(X, upsample_method='deconv'):
"""Creates the transformation network, given dimensions acquired from an
input image. Does this according to J.C. Johnson's specifications
after utilizing instance normalization (i.e. halving dimensions given
in the paper).
:param X
tf.Tensor with NxHxWxC dimensions.
:param upsample_method
values: 'deconv', 'resize'
Whether to upsample via deconvolution, or the proposed fix of resizing
+ convolution. Description of 2nd method is available at:
http://distill.pub/2016/deconv_checkerboard/
"""
assert(upsample_method in ['deconv', 'resize'])
# Input
# X = tf.placeholder(tf.float32, shape=shape, name="input")
# Padding
h = reflect_pad(X, 40)
# Initial convolutional layers
with tf.variable_scope('initconv_0'):
h = relu(inst_norm(conv2d(h, 3, 16, 9, [1, 1, 1, 1])))
with tf.variable_scope('initconv_1'):
h = relu(inst_norm(conv2d(h, 16, 32, 3, [1, 2, 2, 1])))
with tf.variable_scope('initconv_2'):
h = relu(inst_norm(conv2d(h, 32, 64, 3, [1, 2, 2, 1])))
# Residual layers
with tf.variable_scope('resblock_0'):
h = res_layer(h, 64, 3, [1, 1, 1, 1])
with tf.variable_scope('resblock_1'):
h = res_layer(h, 64, 3, [1, 1, 1, 1])
with tf.variable_scope('resblock_2'):
h = res_layer(h, 64, 3, [1, 1, 1, 1])
with tf.variable_scope('resblock_3'):
h = res_layer(h, 64, 3, [1, 1, 1, 1])
with tf.variable_scope('resblock_4'):
h = res_layer(h, 64, 3, [1, 1, 1, 1])
# Upsampling layers (tanh on last to get 0,255 range)
if upsample_method is 'deconv':
with tf.variable_scope('upsample_0'):
h = relu(inst_norm(deconv2d(h, 64, 32, 3, [1, 2, 2, 1])))
with tf.variable_scope('upsample_1'):
h = relu(inst_norm(deconv2d(h, 32, 16, 3, [1, 2, 2, 1])))
with tf.variable_scope('upsample_2'):
h = scaled_tanh(inst_norm(deconv2d(h, 16, 3, 9, [1, 1, 1, 1])))
elif upsample_method is 'resize':
with tf.variable_scope('upsample_0'):
h = relu(inst_norm(upconv2d(h, 64, 32, 3, [1, 2, 2, 1])))
with tf.variable_scope('upsample_1'):
h = relu(inst_norm(upconv2d(h, 32, 16, 3, [1, 2, 2, 1])))
with tf.variable_scope('upsample_2'): # Not actually an upsample.
h = scaled_tanh(inst_norm(conv2d(h, 16, 3, 9, [1, 1, 1, 1])))
# Create a redundant layer with name 'output'
h = tf.identity(h, name='output')
return h
def reflect_pad(X, padsize):
"""Pre-net padding.
:param X
Input image tensor
:param padsize
Amount by which to pad the image tensor
"""
h = tf.pad(X, paddings=[[0, 0], [padsize, padsize], [padsize, padsize],
[0, 0]], mode='REFLECT')
return h
def conv2d(X, n_ch_in, n_ch_out, kernel_size, strides, name=None,
padding='SAME'):
"""Creates the convolutional layer.
:param X
Input tensor
:param n_ch_in
Number of input channels
:param n_ch_out
Number of output channels
:param kernel_size
Dimension of the square-shaped convolutional kernel
:param strides
Length 4 vector of stride information
:param name
Optional name for the weight matrix
"""
if name is None:
name = 'W'
shape = [kernel_size, kernel_size, n_ch_in, n_ch_out]
W = tf.get_variable(name=name,
shape=shape,
dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.1))
h = tf.nn.conv2d(X,
filter=W,
strides=strides,
padding=padding)
return h
def upconv2d(X, n_ch_in, n_ch_out, kernel_size, strides):
"""Resizes then applies a convolution.
:param X
Input tensor
:param n_ch_in
Number of input channels
:param n_ch_out
Number of output channels
:param kernel_size
Size of square shaped convolutional kernel
:param strides
Stride information
"""
shape = [kernel_size, kernel_size, n_ch_in, n_ch_out]
# We first upsample two strides-worths. The convolution will then bring it
# down one stride.
new_h = X.get_shape().as_list()[1]*strides[1]**2
new_w = X.get_shape().as_list()[2]*strides[2]**2
upsized = tf.image.resize_images(X, [new_h, new_w], method=1)
# Now convolve to get the channels to what we want.
shape = [kernel_size, kernel_size, n_ch_in, n_ch_out]
W = tf.get_variable(name='W',
shape=shape,
dtype=tf.float32,
initializer=tf.random_normal_initializer())
h = tf.nn.conv2d(upsized,
filter=W,
strides=strides,
padding="SAME")
return h
def deconv2d(X, n_ch_in, n_ch_out, kernel_size, strides):
"""Creates a transposed convolutional (deconvolution) layer.
:param X
Input tensor
:param n_ch_in
Number of input channels
:param n_ch_out
Number of output channels
:param kernel_size
Size of square shaped deconvolutional kernel
:param strides
Stride information
"""
# Note the in and out channels reversed for deconv shape
shape = [kernel_size, kernel_size, n_ch_out, n_ch_in]
# Construct output shape of the deconvolution
new_h = X.get_shape().as_list()[1]*strides[1]
new_w = X.get_shape().as_list()[2]*strides[2]
output_shape = [X.get_shape().as_list()[0], new_h, new_w, n_ch_out]
W = tf.get_variable(name='W',
shape=shape,
dtype=tf.float32,
initializer=tf.random_normal_initializer())
h = tf.nn.conv2d_transpose(X,
output_shape=output_shape,
filter=W,
strides=strides,
padding="SAME")
return h
def relu(X):
"""Performs relu on the tensor.
:param X
Input tensor
"""
return tf.nn.relu(X, name='relu')
def scaled_tanh(X):
"""Performs tanh activation to ensure range of 0,255 on positive output.
:param X
Input tensor
"""
scale = tf.constant(255.0)
shift = tf.constant(255.0)
half = tf.constant(2.0)
# out = tf.mul(tf.tanh(X), scale) # range of [-255, 255]
out = (scale*tf.tanh(X) + shift) / half
# out = tf.add(out, shift) # range of [0, 2*255]
# out = tf.div(out, half) # range of [0, 255]
return out
def inst_norm(inputs, epsilon=1e-3, suffix=''):
"""
Assuming TxHxWxC dimensions on the tensor, will normalize over
the H,W dimensions. Use this before the activation layer.
This function borrows from:
http://r2rt.com/implementing-batch-normalization-in-tensorflow.html
Note this is similar to batch_normalization, which normalizes each
neuron by looking at its statistics over the batch.
:param input_:
input tensor of NHWC format
"""
# Create scale + shift. Exclude batch dimension.
stat_shape = inputs.get_shape().as_list()
scale = tf.get_variable('INscale'+suffix,
initializer=tf.ones(stat_shape[3]))
shift = tf.get_variable('INshift'+suffix,
initializer=tf.zeros(stat_shape[3]))
inst_means, inst_vars = tf.nn.moments(inputs, axes=[1, 2],
keep_dims=True)
# Normalization
inputs_normed = (inputs - inst_means) / tf.sqrt(inst_vars + epsilon)
# Perform trainable shift.
output = scale * inputs_normed + shift
return output
def res_layer(X, n_ch, kernel_size, strides):
"""Creates a residual block layer.
:param X
Input tensor
:param n_ch
Number of input channels
:param kernel_size
Size of square shaped convolutional kernel
:param strides
Stride information
"""
h = conv2d(X, n_ch, n_ch, kernel_size, strides, name='W1', padding='VALID')
h = relu(inst_norm(h, suffix='1'))
h = conv2d(h, n_ch, n_ch, kernel_size, strides, name='W2', padding='VALID')
h = inst_norm(h, suffix='2')
# Crop for skip connection
in_shape = X.get_shape().as_list()
begin = [0, 2, 2, 0]
size = [-1, in_shape[1]-4, in_shape[2]-4, -1]
X_crop = tf.slice(X, begin=begin, size=size)
# Residual skip connection
h = tf.add(h, X_crop, name='res_out')
return h