Skip to content

Latest commit

 

History

History
105 lines (81 loc) · 5.81 KB

README.md

File metadata and controls

105 lines (81 loc) · 5.81 KB

SRT - Spatial Reduction Tool

SRT is a collector and spatial reducer of data from GEE available dataset. It allows you to calculate the spatial mean and standard deviation from several dataset inside each feature of a feature collection ('MapUnit' in the example). To open the code click here.

The dataset collected are:

  • DEM: USGS/SRTMGL1_003
  • temperature: MODIS/006/MOD11A1
  • precipitation: UCSB-CHG/CHIRPS/DAILY
  • ndvi: LANDSAT/LE07/C01/T1_32DAY_NDVI

The SRT is structured in 5 separated functions which can be run separately or simultanously:

  • SRTtemperature()
  • SRTgeomorphometry()
  • SRTcurvature()
  • SRTprecipitation()
  • SRTndvi()

The SRT requires a polygons collection which represents the mapping units where the datsets have been spatially reduced to mean and std.

The outputs are 5 feature collections which contains several columns:

Function Column name Description
SRTgeomorphometry Elev Elevation
Slope Slope
Asp Aspect
Hill Hillshade
Nss Northness
Ess Eastness
SIdx Shape Index
Rlf Relative relief
SRTcurvature HCv Horizontal curvature
VCv Vertical curvature
MCv Mean curvature
MinCv Minimal curvature
MaxCv Maximal curvature
GCv Gaussian curvature
SRTprecipitation RnSum Annual precipitation averaged over a number of years
RnMax Max daily precipitation of one year averaged over a number of years
RnStd Std daily precipitation of one year averaged over a number of years
RnMed Average daily precipitation of one year averaged over a number of years
SRTtemperature TMed Average daily mean temperature of one year averaged over a number of years
TStd Std daily mean temperature of one year averaged over a number of years
TMax Max daily mean temperature of one year averaged over a number of years
SRTndvi NDVI 32days NDVI averaged over a number of years

Most of the variables derived from the DEM have been calculated using TAGEE function:

Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.O.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. DOI: https://doi.org/10.3390/ijgi9060400

Example of application

link to example

//generate table
var geom=ee.Geometry.BBox(94.1329327392578,25.514028970276666,94.5339337158203,25.890203351903423);
var MapUnit=geom.coveringGrid(geom.projection(),1000);
Map.addLayer(MapUnit,{},'units');

//import tool
var SRT = require('users/giacomotitti/SRT:SRTfunctions');

//temperature
var temperature = SRT.SRTtemperature(MapUnit,2000,2021,30);//mapping unit, start date, end date, scale
print(temperature,'temperature');

//geomorphometry
var geomorphometry = SRT.SRTgeomorphometry(MapUnit,1000,30);//mapping unit, buffer radius for relief, scale
print(geomorphometry,'geomorphometry');

//geomorph
var curvature = SRT.SRTcurvature(MapUnit,30);//mapping unit, scale
print(curvature,'curvature');

// precipitation
var precipitation = SRT.SRTprecipitation(MapUnit,1991,2020,30);//mapping unit, start date, end date, scale
print(precipitation,'precipitation');

//ndvi
var ndvi = SRT.SRTndvi(MapUnit,2011,2020,30);//mapping unit, start date, end date, scale
print(ndvi,'ndvi');

//Display
Map.setCenter(94.33, 25.74, 10);
var display = function(collection,name){
var imaged = collection.reduceToImage({
properties: [name],
reducer: ee.Reducer.first()});
Map.addLayer(imaged,{},name)};

display(ndvi,'NDVI_mean');
display(geomorphometry,'Slope_mean');
display(precipitation,'RnMax_mean');
display(temperature,'TMax_mean');

Contacts

For any request, comment and suggestion, please write to me: [email protected]

Please, cite the following paper when using SRT:

Titti, G., Napoli, G. N., Conoscenti, C., & Lombardo, L. (2022). Cloud-based interactive susceptibility modeling of gully erosion in Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 115, 103089.