forked from atomistic-machine-learning/G-SchNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_classes.py
333 lines (274 loc) · 12.1 KB
/
nn_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
from collections import Iterable
import schnetpack as spk
from schnetpack.nn import MLP
from schnetpack.metrics import Metric
### OUTPUT MODULE ###
class AtomwiseWithProcessing(nn.Module):
r"""
Atom-wise dense layers that allow to use additional pre- and post-processing layers.
Args:
n_in (int): input dimension of representation (default: 128)
n_out (int): output dimension (default: 1)
n_layers (int): number of atom-wise dense layers in output network (default: 5)
n_neurons (list of int or None): number of neurons in each layer of the output
network. If `None`, interpolate linearly between n_in and n_out.
activation (function): activation function for hidden layers
(default: spk.nn.activations.shifted_softplus).
preprocess_layers (nn.Module): a torch.nn.Module or list of Modules for
preprocessing the representation given by the first part of the network
(default: None).
postprocess_layers (nn.Module): a torch.nn.Module or list of Modules for
postprocessing the output given by the second part of the network
(default: None).
in_key (str): keyword to access the representation in the inputs dictionary,
it is automatically inferred from the preprocessing layers, if at least one
is given (default: 'representation').
out_key (str): a string as key to the output dictionary (if set to 'None', the
output will not be wrapped into a dictionary, default: 'y')
Returns:
result: dictionary with predictions stored in result[out_key]
"""
def __init__(self, n_in=128, n_out=1, n_layers=5, n_neurons=None,
activation=spk.nn.activations.shifted_softplus,
preprocess_layers=None, postprocess_layers=None,
in_key='representation', out_key='y'):
super(AtomwiseWithProcessing, self).__init__()
self.n_in = n_in
self.n_out = n_out
self.n_layers = n_layers
self.in_key = in_key
self.out_key = out_key
if isinstance(preprocess_layers, Iterable):
self.preprocess_layers = nn.ModuleList(preprocess_layers)
self.in_key = self.preprocess_layers[-1].out_key
elif preprocess_layers is not None:
self.preprocess_layers = preprocess_layers
self.in_key = self.preprocess_layers.out_key
else:
self.preprocess_layers = None
if isinstance(postprocess_layers, Iterable):
self.postprocess_layers = nn.ModuleList(postprocess_layers)
else:
self.postprocess_layers = postprocess_layers
if n_neurons is None:
# linearly interpolate between n_in and n_out
n_neurons = list(np.linspace(n_in, n_out, n_layers + 1).astype(int)[1:-1])
self.out_net = MLP(n_in, n_out, n_neurons, n_layers, activation)
self.derivative = None # don't compute derivative w.r.t. inputs
def forward(self, inputs):
"""
Compute layer output and apply pre-/postprocessing if specified.
Args:
inputs (dict of torch.Tensor): batch of input values.
Returns:
torch.Tensor: layer output.
"""
# apply pre-processing layers
if self.preprocess_layers is not None:
if isinstance(self.preprocess_layers, Iterable):
for pre_layer in self.preprocess_layers:
inputs = pre_layer(inputs)
else:
inputs = self.preprocess_layers(inputs)
# get (pre-processed) representation
if isinstance(inputs[self.in_key], tuple):
repr = inputs[self.in_key][0]
else:
repr = inputs[self.in_key]
# apply output network
result = self.out_net(repr)
# apply post-processing layers
if self.postprocess_layers is not None:
if isinstance(self.postprocess_layers, Iterable):
for post_layer in self.postprocess_layers:
result = post_layer(inputs, result)
else:
result = self.postprocess_layers(inputs, result)
# use provided key to store result
if self.out_key is not None:
result = {self.out_key: result}
return result
### METRICS ###
class KLDivergence(Metric):
r"""
Metric for mean KL-Divergence.
Args:
target (str): name of target property
model_output ([int], [str]): indices or keys to unpack the desired output
from the model in case of multiple outputs, e.g. ['x', 'y'] to get
output['x']['y'] (default: 'y').
name (str): name used in logging for this metric. If set to `None`,
`KLD_[target]` will be used (default: None).
mask (str): key for a mask in the examined batch which hides irrelevant output
values. If 'None' is provided, no mask will be applied (default: None).
inverse_mask (bool): whether the mask needs to be inverted prior to application
(default: False).
"""
def __init__(self, target='_labels', model_output='y', name=None,
mask=None, inverse_mask=False):
name = 'KLD_' + target if name is None else name
super(KLDivergence, self).__init__(name)
self.target = target
self.model_output = model_output
self.loss = 0.
self.n_entries = 0.
self.mask_str = mask
self.inverse_mask = inverse_mask
def reset(self):
self.loss = 0.
self.n_entries = 0.
def add_batch(self, batch, result):
# extract true labels
y = batch[self.target]
# extract predictions
yp = result
if self.model_output is not None:
if isinstance(self.model_output, list):
for key in self.model_output:
yp = yp[key]
else:
yp = yp[self.model_output]
# normalize output
log_yp = F.log_softmax(yp, -1)
# apply KL divergence formula entry-wise
loss = F.kl_div(log_yp, y, reduction='none')
# sum over last dimension to get KL divergence per distribution
loss = torch.sum(loss, -1)
# apply mask to filter padded dimensions
if self.mask_str is not None:
atom_mask = batch[self.mask_str]
if self.inverse_mask:
atom_mask = 1.-atom_mask
loss = torch.where(atom_mask > 0, loss, torch.zeros_like(loss))
n_entries = torch.sum(atom_mask > 0)
else:
n_entries = torch.prod(torch.tensor(loss.size()))
# calculate loss and n_entries
self.n_entries += n_entries.detach().cpu().data.numpy()
self.loss += torch.sum(loss).detach().cpu().data.numpy()
def aggregate(self):
return self.loss / max(self.n_entries, 1.)
### PRE- AND POST-PROCESSING LAYERS ###
class EmbeddingMultiplication(nn.Module):
r"""
Layer that multiplies embeddings of given types with the representation.
Args:
embedding (torch.nn.Embedding instance): the embedding layer used to embed atom
types.
in_key_types (str): the keyword to obtain types for embedding from inputs.
in_key_representation (str): the keyword to obtain the representation from
inputs.
out_key (str): the keyword used to store the calculated product in the inputs
dictionary.
"""
def __init__(self, embedding, in_key_types='_next_types',
in_key_representation='representation',
out_key='preprocessed_representation'):
super(EmbeddingMultiplication, self).__init__()
self.embedding = embedding
self.in_key_types = in_key_types
self.in_key_representation = in_key_representation
self.out_key = out_key
def forward(self, inputs):
"""
Compute layer output.
Args:
inputs (dict of torch.Tensor): batch of input values containing the atomic
numbers for embedding as well as the representation.
Returns:
torch.Tensor: layer output.
"""
# get types to embed from inputs
types = inputs[self.in_key_types]
st = types.size()
# embed types
if len(st) == 1:
emb = self.embedding(types.view(st[0], 1))
elif len(st) == 2:
emb = self.embedding(types.view(*st[:-1], 1, st[-1]))
# get representation
if isinstance(inputs[self.in_key_representation], tuple):
repr = inputs[self.in_key_representation][0]
else:
repr = inputs[self.in_key_representation]
if len(st) == 2:
# if multiple types are provided per molecule, expand
# dimensionality of representation
repr = repr.view(*repr.size()[:-1], 1, repr.size()[-1])
# multiply embedded types with representation
features = repr * emb
# store result in input dictionary
inputs.update({self.out_key: features})
return inputs
class NormalizeAndAggregate(nn.Module):
r"""
Layer that normalizes and aggregates given input along specifiable axes.
Args:
normalize (bool): set True to normalize the input (default: True).
normalization_axis (int): axis along which normalization is applied
(default: -1).
normalization_mode (str): which normalization to apply (currently only
'logsoftmax' is supported, default: 'logsoftmax').
aggregate (bool): set True to aggregate the input (default: True).
aggregation_axis (int): axis along which aggregation is applied
(default: -1).
aggregation_mode (str): which aggregation to apply (currently 'sum' and
'mean' are supported, default: 'sum').
keepdim (bool): set True to keep the number of dimensions after aggregation
(default: True).
in_key_mask (str): key to extract a mask from the inputs dictionary,
which hides values during aggregation (default: None).
squeeze (bool): whether to squeeze the input before applying normalization
(default: False).
Returns:
torch.Tensor: input after normalization and aggregation along specified axes.
"""
def __init__(self, normalize=True, normalization_axis=-1,
normalization_mode='logsoftmax', aggregate=True,
aggregation_axis=-1, aggregation_mode='sum', keepdim=True,
mask=None, squeeze=False):
super(NormalizeAndAggregate, self).__init__()
if normalize:
if normalization_mode.lower() == 'logsoftmax':
self.normalization = nn.LogSoftmax(normalization_axis)
else:
self.normalization = None
if aggregate:
if aggregation_mode.lower() == 'sum':
self.aggregation =\
spk.nn.base.Aggregate(aggregation_axis, mean=False,
keepdim=keepdim)
elif aggregation_mode.lower() == 'mean':
self.aggregation =\
spk.nn.base.Aggregate(aggregation_axis, mean=True,
keepdim=keepdim)
else:
self.aggregation = None
self.mask = mask
self.squeeze = squeeze
def forward(self, inputs, result):
"""
Compute layer output.
Args:
inputs (dict of torch.Tensor): batch of input values containing the mask
result (torch.Tensor): batch of result values to which normalization and
aggregation is applied
Returns:
torch.Tensor: normalized and aggregated result.
"""
res = result
if self.squeeze:
res = torch.squeeze(res)
if self.normalization is not None:
res = self.normalization(res)
if self.aggregation is not None:
if self.mask is not None:
mask = inputs[self.mask]
else:
mask = None
res = self.aggregation(res, mask)
return res